

Formal Models of Communicating Systems

Benedikt Bollig

Formal Models
of Communicating
Systems
Languages, Automata,
and Monadic Second-Order Logic

With 72 Figures and 6 Tables

123

Author

Benedikt Bollig

Laboratoire Spécification et Vérification
CNRS UMR 8643 & ENS de Cachan
94235 Cachan Cedex
France
bollig@lsv.ens-cachan.fr

Library of Congress Control Number: 2006928323

ACM Computing Classification (1998): F.1, F.2, F.3, F.4, G.2.2.

ISBN-10 3-540-32922-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-32922-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad-
casting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of
this publication or parts thereof is permitted only under the provisions of the German Copyright Law
of September 9, 1965, in its current version, and permission for use must always be obtained from
Springer. Violations are liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant pro-
tective laws and regulations and therefore free for general use.

Typeset by the author
Production: LE-TEX Jelonek, Schmidt & Vöckler GbR, Leipzig
Cover design: KünkelLopka Werbeagentur, Heidelberg

Printed on acid-free paper 45/3100/YL - 5 4 3 2 1 0

Preface

The close connection between automata and logic has ever been a fascinating
subject of theoretical computer science. The origins of that area go back to
Büchi and Elgot, who showed at the beginning of the 60’s that formulas
from monadic second-order logic and finite automata have the same expressive
power.

Since then, a large amount of research has been accomplished to extend
those results to other settings such as infinite words, trees, traces, and grids.
The benefits of precise characterizations of state-based, operational automata
models in terms of descriptive logical formalisms are twofold. On the one hand,
they allow us to derive algorithmic and logical properties of the model. On
the other hand, from a software engineer’s perspective, fragments of monadic
second-order logic might be used to specify the desired system behavior, which
is then reflected in an automata implementation.

This book studies the relation between automata and monadic second-
order logic. In doing so, it focuses on classes of automata that describe the
concurrent behavior of a distributed system. For example, we will bridge the
gap between monadic second-order logic and channel systems, which com-
municate via reliable or faulty fifo (“first-in, first-out”) queues. Moreover, we
will study systems that synchronize when simultaneously accessing a common
device. Due to the complexity of those communication paradigms, the formal
treatment of related systems in terms of automata models and equivalent
logical formalisms plays an important role in their synthesis and verification.

The reader is assumed to have only some basic knowledge in theoretical
computer science (e.g., about finite automata and formal languages) and to be
familiar with mathematical terminology and notation. Thus, the book should
be accessible to senior undergraduate or graduate students. Please note that
any relevant information in conjunction with this book, such as course mate-
rial, solutions to selected exercises, list of errata, etc., will be provided on its
homepage, which is located at

http://www.lsv.ens-cachan.fr/∼bollig/fmcs/

VI Preface

A large part of this book is based on my Ph.D. thesis “Automata and
Logics for Message Sequence Charts”, which I wrote at RWTH Aachen Uni-
versity.

First and foremost, I wish to express my gratitude and admiration to
my former supervisor, Prof. Klaus Indermark. His enthusiasm and continuous
support, his advice and suggestions have influenced me greatly as a computer
scientist and enabled me to write this book.

I am grateful to Prof. Wolfgang Thomas, without whose seminal scientific
contributions and inspiring and insightful lectures the results documented in
this book would not have been possible.

My special thanks go to Martin Leucker, who introduced me to research,
message sequence charts, and so much more. I learned a lot from his knowledge
and it has been a privilege working with him and having him as a friend.

I gratefully acknowledge the funding of my stay at Birmingham University
by the German Academic Exchange Service (DAAD). I thank Prof. Marta
Kwiatkowska for giving me the opportunity to work with her and her excellent
group during that memorable time.

Parts of this book were written in Cachan, France, where I currently hold
a CNRS research position at the Laboratoire Spécification et Vérification.

I feel very much indebted to Marie Duflot-Kremer and Steve Kremer.
Thank you for all your hospitality, graciousness, and patience, which made
me feel at home from the day I moved to France.

Many thanks go to everyone at the Laboratoire Spécification et Vérification
for their warm welcome and support and for an outstanding, motivating, and
friendly research environment.

I thank Springer-Verlag for editorial assistance and Ronan Nugent for his
continuous support and helpfulness during the whole production process of
the book.

Last, but certainly not least, let me record my sincerest thanks to Kerstin
for all her love, care, and patience, and to my parents and to my sister for the
unfailing support they have provided me with throughout.

Cachan, France Benedikt Bollig
April 2006

Contents

1 Introduction . 1
1.1 Formal Methods . 1
1.2 Partial Orders and Graphs . 3
1.3 High-Level Specifications . 5
1.4 Towards an Implementation . 6
1.5 An Overview of the Book . 7

2 Preliminaries . 11
2.1 Words and Partial Orders . 11
2.2 Monoids and Languages . 12
2.3 Turing Machines and the Halting Problem 14
2.4 Bibliographic Notes . 15

3 Graphs, Logics, and Graph Acceptors . 17
3.1 Graphs . 17
3.2 Monadic Second-Order Logic over Graphs 18
3.3 Hanf’s Theorem . 23
3.4 Graph Acceptors . 27
3.5 Directed Acyclic Graphs . 30
3.6 Pictures and Grids . 31
3.7 Bibliographic Notes . 34

4 Words and Finite Automata . 35
4.1 Words . 35
4.2 Finite Automata . 36
4.3 Summary . 40
4.4 Bibliographic Notes . 41

5 Dags and Asynchronous Cellular Automata 43
5.1 (Σ̃, C)-Dags . 43

5.2 The Operational Behavior of (Σ̃, C)-Dags 50

VIII Contents

5.3 Asynchronous Cellular Automata with Types 52
5.4 ACATs vs. ACAs . 56
5.5 The Expressive Equivalence of ACATs and EMSO Logic 60
5.6 Summary . 74
5.7 Bibliographic Notes . 75

6 Mazurkiewicz Traces and Asynchronous Automata 77
6.1 Mazurkiewicz Traces . 77
6.2 Trace Languages . 78
6.3 Asynchronous Automata . 80
6.4 Asynchronous Automata vs. ACAs and EMSO Logic 84
6.5 Product Automata . 87
6.6 Summary . 89
6.7 Bibliographic Notes . 90

7 Message Sequence Charts . 91
7.1 Message Sequence Charts . 91
7.2 Universal and Existential Bounds . 95
7.3 High-Level Message Sequence Charts . 96
7.4 Message Contents and Non-Fifo Behavior 103
7.5 Live Sequence Charts . 105
7.6 Regular MSC Languages . 107
7.7 (E)MSO-Definable MSC Languages . 107
7.8 Product MSC Languages . 109
7.9 Relationships to Mazurkiewicz Traces . 110
7.10 Bibliographic Notes . 114

8 Communicating Finite-State Machines . 117
8.1 Communicating (Finite-State) Machines . 117
8.2 Channel-Bounded and Deadlock-Free CMs 122
8.3 Undecidability Results . 124
8.4 Lossy Channel Systems . 128
8.5 Non-Fifo Channel Systems . 130
8.6 CMs vs. Product MSC Languages . 131
8.7 CFMs vs. Regular MSC Languages . 132
8.8 CFMs vs. ACAs and EMSO Logic . 133
8.9 CFMs vs. Graph Acceptors . 138
8.10 CFMs vs. EMSO-Definable Product Languages 144
8.11 The Complete Hierarchy . 145
8.12 Bibliographic Notes . 149

9 Beyond Implementability . 151
9.1 EMSO vs. MSO in the Bounded Setting . 151
9.2 EMSO vs. MSO in the Unbounded Setting 153
9.3 Determinism vs. Nondeterminism . 158

Contents IX

9.4 CFMs vs. Recognizability . 159
9.5 CFMs vs. Rational MSC Languages . 160
9.6 Summary . 163
9.7 Bibliographic Notes . 164

References . 165

Symbols and Notation . 173

Index . 179

1

Introduction

Nowadays, electronic devices largely depend on complex hardware and soft-
ware systems. Among them, medical instruments, traffic control units, and
many more safety-critical systems are subject to particular quality standards.
They all come along with the absolute need for reliability, as, in each case,
the consequences of a breakdown may be incalculable.

1.1 Formal Methods

Many existing systems were unthinkable some years ago and their complexity
is still rapidly growing so that it becomes more and more difficult to de-
tect errors or to predict their incidence. Consequently, formal methods play
an increasing role during the whole system-design process. The term “formal
methods” hereby covers a wide range of mathematically derived and ideally
mechanized approaches to system design and validation. More precisely, re-
search on formal methods attempts to develop mathematical models and algo-
rithms that may contribute to the tasks of modeling, specifying, and verifying
software and hardware systems. Let us go into these subareas in more detail:

Modeling

To make a system (or the idea of a system) accessible to formal methods, we
require it to be modeled mathematically. Unfortunately, we are faced with
a dilemma: on the one hand, a model ideally preserves and reflects as many
properties of the underlying system as possible. On the other hand, it should
be compact enough to support algorithms for further system analysis. How-
ever, in general, a good balance between detailed modeling and abstraction
will pay off. But not only does the modeling process lead to further interest-
ing conclusions, it may also help, itself, to get a better understanding of the
system at hand. Thus, the purposes of modeling a system are twofold. One is
to understand and document its essential features. The other is to provide the

2 1 Introduction

formal basis for a mathematical analysis. Both are closely related and usually
accompany each other.

Preferably, the modeling takes place in an early stage of system design.
The starting point, at a high level of abstraction, may be a rough, even if
precisely defined, idea of the system to be, which is subsequently refined step-
wise towards a full implementation. While, as mentioned, the latter might be
too detailed to draw conclusions from, previous stages of the design phase can
be consulted for that purpose. The models considered in this book are com-
municating automata, which, though they might abstract from many details,
reflect the operational behavior of a distributed system in a suitable manner
to make it accessible to formal methods.

Specification

Correctness of a system is always relative to a specification, a property or re-
quirement that must be satisfied. Embedded into the formal-methods frame-
work, a specification is often expressed within a logical calculus whose formulas
can be interpreted over system models, provided they are based on a common
semantic domain. Prominent examples are monadic second-order (MSO) logic
[8, 44], the temporal logics LTL [83] and CTL [22], and the µ-calculus [54]. A
specification might also be given in a high-level language that is closer to an
implementation and often allows us to synthesize a system directly and auto-
matically. In this regard, let us mention some process-algebra based languages
such as CCS [71], ACP [9], and LOTOS [18] and other formal design notions
like VHDL [81]. In this book, we focus on a monadic second-order logic, which
might be used to formulate properties that a given system should satisfy, and
high-level message sequence charts, which are employed at a rather early stage
of system development.

Verification

Once a system is modeled and a specification is given, the next task might be
to check if the specification is satisfied by the model. If the system or, rather,
the model of a system passes successfully through a corresponding valida-
tion process, it may be called correct in a mathematical sense. Preferably,
the verification process runs automatically. However, many frameworks are
too complex to support fully mechanized algorithms. In this respect, we can
distinguish two general approaches to verification: model checking [23], which
is fully automatic, and theorem proving [85], which requires human assistance.
If, otherwise, a system is synthesized directly from its specification, then it
can be assumed to be correct a priori, provided the translation preserves the
semantics of the specification.

Several phases of system design are depicted in Fig. 1.1, which, in addition,
features the stage of code generation to gain from the system model an effective
implementation thereof.

1.2 Partial Orders and Graphs 3

1 2
req

ack

syn

send

rec

send rec

rec

send

rec send

/* Sending Process */
initsend();
putint(2);
send("receiver",4,99);

/* Receiving Process */
int num;
recv(99);
getint(&num);

?

|= G (1!2 → F 2?1)

Safety,
Liveness, ...

specification

synthesis

modeling &
verification

code generation

Fig. 1.1. Stages of system development

1.2 Partial Orders and Graphs

As mentioned above, it is desirable to apply formal methods even in the early
stages of system design to avoid extensive reimplementation and redesign,
which, in turn, might lead to explosive costs. A common design practice when
developing communicating systems is to start with specifying scenarios to
exemplify the intended interaction of the system to be. Usually, distributed
systems operate concurrently, i.e., some actions do not depend on the oc-
currence of another. One possible single execution sequence of a distributed
system is therefore often described by a partially ordered set (poset) (V,≤),
such as depicted by Fig. 1.2a. The elements of V , which are also referred
to as events, comprise actions that are executed during a system run. They
are arranged according to the partial order ≤ ⊆ V × V to reflect their in-
teraction dependencies. Say, for example, we deal with events send, rec ∈ V
that form the send and receipt of a message. Naturally, sending a message
precedes its receipt so that send ≤ rec. Otherwise, there might be events
that do not interfere with each other. For example, two read events read1(x)
and read2(x) that independently read a shared variable x are not related, so
neither read1(x) ≤ read2(x) nor read2(x) ≤ read1(x), whereas the time of
writing the variable does affect the value of what is read (cf. Fig. 1.2c).

A poset, in turn, might be represented by a graph (V,→) whose edge
relation → ⊆ V × V gives rise to ≤ when generating its reflexive transitive
closure. Sometimes, → allows a more concrete modeling of communication
than ≤. Namely, writing send → rec suggests that send and rec together

4 1 Introduction

send

send′ rec

(a) a poset

send rec

(b) a graph

write(x)

read1(x) read2(x)

(c) independence
of events

Fig. 1.2. Partially ordered sets and graphs

form the exchange of one and the same message (cf. Fig. 1.2b), whereas writing
send ≤ rec is actually a weaker statement, just claiming that rec happens
eventually after send but might be the receipt of another event send′, as
illustrated in Fig. 1.2a.

Message sequence charts (MSCs) provide a prominent notion to further the
partial-order and graph-based approaches. They are widely used in industry,
are standardized [49, 50], and are similar to UML’s sequence diagrams [7]. An
MSC depicts a single partially ordered execution sequence of a system. In do-
ing so, it defines a collection of processes, which, in their visual representation,
are drawn as vertical lines and interpreted as time axes. Moreover, an arrow
from one line to a second corresponds to the communication events of sending
and receiving a message. An example MSC illustrating a part of Bluetooth
[13], a specification for wireless communication, is depicted in Fig. 1.3. Using
the Host Control Interface (HCI), which links a Bluetooth host (a portable
PC, for example) with a Bluetooth controller (a PCMCIA card, for example),
a host application attempts to establish a connection to another device. The
connection-request phase, which is based on an asynchronous connectionless
link (ACL), is heralded by Host-A sending a HCI Create Connection com-
mand to its controller to initiate a connection. Note that, usually, a command
is equipped with parameters, which are omitted here. As HCI commands may
take different amounts of time, their status is reported back to the host in
the form of a HCI Command Status event. After that, HC-A defers the present
request to HC-B, which, in turn, learns from Host-B that the request has been
rejected, again accompanied by sending a status event. The controllers agree
on rejection by exchanging messages LMP not accepted and LMP detach and,
afterwards, provide both Host-A and Host-B with HCI Connection Complete

events. The execution sequence illustrated above depends on the visual ar-
rangement of arrows. An endpoint of an arrow is a send event if it is the
source of that arrow. Otherwise, it is a receive event. More specifically, we
suppose events located on one and the same process line to be totally or-
dered and require a receive event to occur only if the corresponding send
event has been executed. The above-mentioned partial order now arises from
the reflexive transitive closure of those assumptions. Note that, in fact, some
pairs of events cannot be ordered accordingly. Considering our example, re-

1.3 High-Level Specifications 5

ceiving HCI Command Status by Host-A may occur before or after receiving
LMP host connection req, while the latter is supposed to happen after send-
ing the former HCI Command Status event.

Host-A HC-A HC-B Host-B

HCI Create Connection

HCI Command Status

LMP host connection req

HCI ConnectionRequest

HCI Reject Connection Request

HCI Command Status

LMP not accepted

LMP detach

HCI Connection Complete HCI Connection Complete

Fig. 1.3. An MSC modeling the ACL connection request phase

1.3 High-Level Specifications

Recall that a specification language might be used to formulate desirable
properties of a given implementation or represent a first intuition of what the
system has to do. A single graph or poset can, however, describe no more
than one single execution sequence. Otherwise, a collection of graphs might
capture all the scenarios that a designer wants the system under development
to realize. Based on the notion of MSCs and the likewise partial-order based
concept of Mazurkiewicz traces [27], several modeling and specification for-
malisms have been considered at a formal level, among them high-level MSCs
[6, 45, 68, 76], which are capable of describing possibly infinitely many scenar-
ios in a compact manner. From an algebraic point of view, high-level MSCs
are rational expressions defining rational languages by means of choice, con-
catenation, and iteration. The study of algebraic language classes might then
lead us to recognizable languages [73, 96], which can be characterized by cer-
tain monoid automata. Following the classical algebraic approach further, we
will come across the class of regular languages whose linear extensions form a
regular word language.

6 1 Introduction

Moreover, there is a close connection between MSCs and Mazurkiewicz
traces so that transferring the regularity notions for traces might be another
axis to define regularity of sets of MSCs. Those aspects have been studied in
[35, 56, 72, 73]. As we will see, the above language classes exhibit quite different
properties in terms of implementability. Hereby, the notion of implementability
is derived from a reference model, the poset- or graph-based counterpart of a
finite automaton over words, which is explained in the next section in more
detail.

MSO logic provides another specification formalism. But not only does
MSO logic constitute an expressive specification language. Its relation to for-
malisms such as automata or high-level constructs over graphs and posets has
also been a research area of great interest aiming at a deeper understanding of
the latter’s logical and algorithmic properties (see [94] for an overview). Fol-
lowing the logical approach, one might likewise argue that we can call a set of
graphs regular if it is definable in the corresponding MSO logic, because, in
the domain of words, regularity and definability in MSO logic coincide [20, 32].

1.4 Towards an Implementation

The next step in system design might be to supply an implementation realizing
or satisfying a specification. Recall that we are still interested in an abstract
model rather than a concrete implementation in some low-level programming
language. However, the view we are taking now is much closer to the latter.
More precisely, we ask for automata models that are suited to accepting the
system behavior described by, say, a high-level MSC, a logical formula, or
a monoid automaton. Consequently, we are particularly interested in their
expressiveness relative to the above-mentioned language classes.

To create formal methods tailored to a distributed system and to the
associated mathematical model, it is generally helpful to study some of the
model’s properties first and to learn more about its limitations along with
algorithmic restrictions and its degree of abstraction. In this regard, typical
questions to clarify are:

• Is my model of an implementation a suitable one, i.e., does it reflect all
the aspects I want to verify?

• What is a suitable specification language; is any specification imple-
mentable?

• What kind of problem can I expect to be decidable?

Basically, that is what this book is all about. We will hereby concentrate
on communicating systems, which occur whenever independent processes and
objects interact, whether via message exchange through fifo (“first-in, first-
out”) buffers or when attempting to write a shared variable. At the same time,
we focus on issues related to the areas of system modeling and specification.

1.5 An Overview of the Book 7

In particular, we will address the relation of several automata models with
(fragments of) MSO logic to clarify its use as a specification language.

Concerning systems that are distributed in nature, the notion of a pro-
cess is central. It seems therefore natural to consider each process as a single
automaton and to define a notion of communication describing how these par-
allel systems work together. When, for example, we equip such local processes
with message buffers, we obtain the model of a message-passing automaton
or communicating (finite-state) machine. There is a precise logical character-
ization of communicating finite-state machines by a fragment of MSO logic,
called existential MSO (EMSO) logic, so that any specification in terms of
an EMSO expression has an implementation in terms of a communicating
finite-state machine. Another model of communication is provided by asyn-
chronous automata. Herein, local processes synchronize by executing certain
actions (e.g., writing a variable) simultaneously, whereas others may be taken
autonomously (e.g., reading the variable). Asynchronous automata were in-
troduced originally by Zielonka in the framework of the partial-order model
of Mazurkiewicz traces [97], and they were generalized by Droste et al. to
run on even more general posets [29]. Asynchronous automata could also be
shown to be expressively equivalent to EMSO logic relative to traces and
CROW-posets, which are subject to an axiom that considers concurrent read
and exclusive owner write. A quite general method of recognizing sets of par-
tial orders and graphs is that of graph acceptors as introduced by Thomas
[93]. They are known to be exactly as expressive as EMSO logic for arbitrary
classes of graphs that have bounded degree. But they lack operational be-
havior and do not really reflect the dynamic causal nature of a system. We
will, however, get to know asynchronous cellular automata (with types), which
combine the models of asynchronous automata, graph acceptors, communicat-
ing finite-state machines, and many other systems and allow us to treat them
in a unifying framework. In particular, asynchronous cellular automata turn
out to have the same expressive power as EMSO logic relative to any class of
pomsets and dags.

1.5 An Overview of the Book

Chapter 2 recalls some basic notions and results concerning posets, monoids,
and formal languages. It moreover presents the well-known halting problem of
Turing machines, an undecidable problem that will be used to obtain related
undecidability results with respect to communicating automata.

Chapter 3 introduces graphs in general and related notions, presents the
corresponding MSO logic to express graph properties, and provides Thomas’
fundamental result, which makes use of the famous theorem of Hanf and serves
as the basis for upcoming logical characterizations: the expressive equivalence
of graph acceptors and EMSO logic.

8 1 Introduction

Chapter 4 recalls the well-known and thoroughly studied model of finite
automata over words and their relation with MSO logic and the algebraic no-
tions of recognizability and rationality. Though finite automata are considered
to be a purely sequential model, they will, equipped with a communication
medium, represent the building blocks of a distributed system.

Chapter 5 lays the foundation of subsequent chapters. It constitutes the
basic parameter or architecture of a communicating system in terms of a
distributed alphabet and introduces asynchronous cellular automata (with
types) as a universal tool unifying finite automata, asynchronous automata,
graph acceptors, communicating finite-state machines, and lossy channel sys-
tems. Asynchronous cellular automata turn out to be expressively equivalent
to EMSO logic relative to dags over distributed alphabets and therefore cover
the expressiveness results of all the above-mentioned models. Though, at first
sight, asynchronous cellular automata appear as a rather complex and unin-
tuitive model (e.g., compared with finite automata), they have been around
since the end of the 80’s and are a well-established tool to describe concurrent
behavior. In this book, we deal with a particularly simple definition of asyn-
chronous cellular automata to make them accessible to a broad readership.
The reader is encouraged to study this model thoroughly; a good comprehen-
sion thereof will pay off and enable her to understand more specific concepts
more easily (such as shared-memory and channel systems), to design her own
automata models and to characterize them logically, and to sharpen the un-
derstanding of different phenomena of concurrency and their characteristics.

Chapter 6 presents asynchronous automata, a formal model of shared-
memory systems. Naturally, asynchronous automata run over Mazurkiewicz
traces, a class of graphs that describe the simultaneous access by several pro-
cesses to common resources. The literature provides manifold approaches to
modeling traces, and every approach has its strengths and weaknesses. In our
setting, traces are best defined as graphs, as introduced in Chap. 3. We estab-
lish a logical characterization of asynchronous automata in terms of EMSO
logic interpreted over traces. Note that the derivation of this equivalence is
solely based on our considerations in Chap. 5 and, unlike other methods that
have been applied so far, does not rely on further results whose proofs would
have gone beyond the scope of this book. Finally, we recall the well-known
theorem of Zielonka, which compares asynchronous automata with the notion
of recognizability.

From Chap. 7 on, the book concentrates on systems that communicate
through reliable or faulty (fifo) channels. In this regard, we first provide the
notion of MSCs, followed by the definition of several classes of MSC languages,
e.g., generated by high-level MSCs. Recall that a single MSC describes one
possible run of the system at hand, whereas a set of MSCs (an MSC language)
might be used to characterize the complete system behavior.

Traces are to asynchronous automata as MSCs are to communicating
finite-state machines. The definition of communicating finite-state machines
and lossy channel systems can be found in Chap. 8, which also deals with

1.5 An Overview of the Book 9

their expressiveness relative to the previously proposed language classes. In
particular, again exploiting Chap. 5, we can easily derive from the logical
characterization of asynchronous cellular automata a logical characterization
of communicating finite-state machines.

Finally, Chap. 9 studies the gap between MSO logic and its existential frag-
ment, exemplified in the framework of communicating finite-state machines,
which is also compared to the formalisms of high-level MSCs and recogniz-
ability. It will turn out that, as a specification language, the full MSO logic
and (compositional) high-level MSCs are too powerful: we identify both MSO
and high-level MSC specifications that cannot be implemented in terms of an
automaton.

2

Preliminaries

This chapter provides some mathematical background and basic notions con-
cerning binary relations, partial orders, monoids, rational and recognizable
languages, and Turing machines.

2.1 Words and Partial Orders

Let Σ be an alphabet, i.e., a nonempty finite set of symbols or letters. The
set of (finite) strings or words over Σ is denoted by Σ∗, the set of nonempty
words by Σ+. The empty string, i.e., the neutral element with respect to word
concatenation, is denoted by ε. Note that words will later be seen as system
runs and therefore be modeled as a special case of graphs. This is, however,
just to treat the objects that represent the behavior of a distributed system
in a unified manner and does not affect the notions introduced so far. Thus,
we may, throughout the book, consider a word to be a sequence of letters.

Given a set V and binary relations R1,R2 ⊆ V ×V , the product R1◦R2 ⊆
V × V of R1 and R2 is the binary relation {(u, v) ∈ V × V | there is w ∈ V
such that (u, w) ∈ R1 and (w, v) ∈ R2}. Given R ⊆ V × V , we moreover
define R0 to be {(u, u) | u ∈ V } and Rn+1 to be R ◦ Rn for any n ∈ IN
(where IN is the set of natural numbers including 0). Finally, let R∗ denote
the infinite union

⋃
n∈INR

n. Note that, instead of (u, v) ∈ R, we may also
write uRv.

A binary relation ≤ ⊆ V × V on a set V is called

• reflexive if, for each u ∈ V , u ≤ u,
• irreflexive if, for each u ∈ V , u �≤ u,
• transitive if, for any u, v, w ∈ V , (u ≤ v ∧ v ≤ w) implies u ≤ w, and
• antisymmetric if, for any u, v ∈ V , (u ≤ v ∧ v ≤ u) implies u = v.

As mentioned in the introduction, one single behavior of a distributed
system will be described in a compact manner by a partially ordered set.

12 2 Preliminaries

Definition 2.1 (Partially Ordered Set). A (finite) partially ordered set
(also called a poset) is a pair (V,≤) such that

• V is a finite set, and
• ≤ is a binary relation on V that is reflexive, transitive, and antisymmetric.

Given a poset (V,≤), we call the relation ≤ a partial order. A totally ordered
set is a poset (V,≤) such that, for any u, v ∈ V , u ≤ v or v ≤ u. Accordingly,
we then call the relation ≤ a total order.

Let P = (V,≤) be a poset. By <, we denote the binary relation ≤ \
{(u, u) | u ∈ V }. Moreover, for u, v ∈ V , let us write u � v if both u < v
and, for any w ∈ V , u < w ≤ v implies w = v. Then, (V, �) and � are
called the Hasse diagram of P and, respectively, the covering relation of ≤.
For u ∈ V , we furthermore say that u is minimal/maximal in P (we also say
minimal/maximal in (V, <)) if there is no v ∈ V such that v < u/u < v,
respectively. Given an alphabet Σ, a Σ-labeled poset is a triple (V,≤, λ) such
that (V,≤) is a poset and λ is a function V → Σ, called a labeling function.

Throughout this book, we do not distinguish isomorphic structures.

2.2 Monoids and Languages

The objects considered when modeling the behavior of a distributed system
are often equipped with a concatenation function, which allows us to combine
single behaviors towards more complex ones. Together with a unit element,
this gives rise to a monoid.

Definition 2.2 (Monoid). A monoid is a triple (M, ·,1) such that

• M is a nonempty set,
• · is an associative mapping M×M→M

(i.e., (t1 · t2) · t3 = t1 · (t2 · t3) for any t1, t2, t3 ∈M), and
• 1 ∈M is the unit satisfying 1 · t = t · 1 = t for any t ∈M.

A monoid (M, ·,1) is often identified with its universe M. A subset of M
is called a language. Given languages L1, L2 ⊆ M, the product of L1 and L2

is denoted by L1 ·L2 and defined to be the set {t1 · t2 | t1 ∈ L1 and t2 ∈ L2}.
Furthermore, we set L0 := {1} and, for n ∈ IN, Ln+1 := L ·Ln. The iteration
of L is defined to be L∗ :=

⋃
n∈IN Ln, which is also denoted by 〈L〉M. Note

that 〈L〉M is a submonoid of M. By L+, we abbreviate
⋃

n∈IN≥1
Ln where

IN≥1 will throughout this book stand for the set of positive natural numbers.
A language L ⊆ M is called finitely generated if there is a finite subset Π of
M such that L ⊆ 〈Π〉M. In that case, we also say that L is finitely generated
by Π.

Definition 2.3 (Rational Language). Let (M, ·,1) be a monoid. The class
RAT M of rational subsets of M is the least set R satisfying

2.2 Monoids and Languages 13

• ∅ ∈ R,
• {t} ∈ R for any t ∈M, and
• L1 · L2, L1 ∪ L2, and L∗ are contained in R for any L1, L2, L ∈ R.

Remark 2.4. Any rational language is finitely generated.

In other words, a rational language can be obtained from the finite subsets
of M by means of finitely many unions, products, and iterations. It may be
described by a rational expression of M:

Definition 2.5 (Rational Expression). Let (M, ·,1) be a monoid. The set
REXM of rational expressions of M is the least set R satisfying

• ∅ ∈ R,
• M ⊆ R,
• α1 · α2 ∈ R for any α1, α2 ∈ R,
• α1 + α2 ∈ R for any α1, α2 ∈ R, and
• α∗ ∈ R for any α ∈ R.

We call the rational expressions from M ·∪ {∅} atomic, whereas the re-
maining cases form compound expressions. Henceforth, α+ will stand for α·α∗.
Moreover, we will often write α1α2 instead of α1 · α2. To save brackets, we
follow the convention that ∗ binds stronger than the binary operators · and +,
and · binds stronger than +. Let L(α) denote the language that corresponds
to the rational expression α of M. It is inductively determined by

• L(∅) = ∅,
• L(t) = {t} for any t ∈M,
• L(α1 · α2) = L(α1) · L(α2),
• L(α1 + α2) = L(α1) ∪ L(α2), and
• L(α∗) = L(α)∗.

Exercise 2.6. Which of the following statements hold for arbitrary monoids
M and arbitrary α, α1, α2 ∈ REXM? In case that a statement is not true for
arbitrary monoids, is there a monoid that makes it true?

(a) L(α · ∅) = ∅,
(b) L(α) = ∅ implies α = ∅,
(c) L(α1 · α2) = L(α2 · α1),
(d) L((α1 + α2)

∗) = L(α∗
1 + α2)

∗.

A subset L of M is called recognizable if there exist a finite monoid
(M′, ·′,1′) and a monoid morphism η : M→M′ (i.e., η(t1 · t2) = η(t1) ·

′ η(t2)
for any t1, t2 ∈ M and η(1) = 1′) such that L = (η−1 ◦ η)(L). Note that
the set of recognizable subsets of M is closed under union, intersection, and
complement. Recognizability can be defined equivalently in terms of monoid
automata. Formally, an M-automaton is a quadruple (Q, δ, q0, F) where Q is
the nonempty finite set of states, q0 ∈ Q is the initial state, F ⊆ Q is the set

14 2 Preliminaries

of final states, and δ is a function Q×M → Q such that, for any q ∈ Q and
t1, t2 ∈ M, δ(q,1) = q and δ(δ(q, t1), t2) = δ(q, t1 · t2), which can be consid-
ered to be some compositional rule. We might now call a language L ⊆ M
recognizable if L = {t ∈M | δ(q0, t) ∈ F} for some M-automaton (Q, δ, q0, F).
The set of recognizable subsets of M is denoted by RECM. The following is
well known [79].

Proposition 2.7. For any monoid M, the following are equivalent:

1. M is finitely generated,
2. M ∈ RAT M,
3. RECM ⊆ RAT M.

2.3 Turing Machines and the Halting Problem

We recall an important undecidable problem, which will be used to infer
several undecidability results in this book: the halting problem of a Turing
machine.

Definition 2.8. A Turing machine is a structure (Q, Σ, ∆, �, q0, qf) where

• Q is its nonempty finite set of states,
• Σ is its (nonempty and finite) tape alphabet,
• ∆ ⊆ Q×Σ ×Σ × {L, N, R} ×Q is its transition relation,
• � ∈ Σ \Q is the blank symbol, and
• qf ∈ Q is its final state.

A configuration of a Turing machine M = (Q, Σ, ∆, �, q0, qf) is a word
from (Σ × {�})∗(Σ × Q)(Σ × {�})∗. Configurations such as γ0 = (�, q0),
γ1 = (a, �)(�, q1), γ2 = (a, q2)(b, �), and γ3 = (�, q3)(a

′, �)(b, �) might be

written as γ0 =

(
�

q0

)
, γ1 =

(
a �

� q1

)
, γ2 =

(
a b
q2 �

)
, and γ3 =

(
� a′ b
q3 � �

)
,

respectively, or they might be depicted as in Fig. 2.1, which illustrates a
possible computation of M. Thus, the first row of a configuration represents
the current contents of the working tape ofM, whereas the second row marks
both the position of the letter to be read next and the current state of M
(i.e., in the second row, the symbol � is just a placeholder and not related
to the same symbol that is used in the first row). The set of configurations
ofM is denoted by ConfM. Intuitively, a transition (q, a, a′, θ, q′) ∈ ∆ can be
read as “if the Turing machine is in state q and reads an a, it may overwrite
the a and replace it with an a′, move to the left/stand still/move to the right
(depending on whether the value of θ is L/N/R, respectively), and go into
state q′”.

The behavior of M is reflected by a relation �M ⊆ ConfM × ConfM:
given γ, γ′ ∈ ConfM, we write γ �M γ′ if there are w1, w2 ∈ (Σ × {�})∗,
(q, a, a′, θ, q′) ∈ ∆, and b ∈ Σ such that one of the following is true:

2.4 Bibliographic Notes 15

�

q0

a �

q1

a

q2

b

�

q3

a′ b

...

�M

�M

�M

Fig. 2.1. The computation of a Turing machine M

• γ = w1(a, q)w2, γ′ = w1(a
′, q′)w2, and θ = N ,

• γ = w1(a, q)(b, �)w2, γ′ = w1(a
′, �)(b, q′)w2, and θ = R,

• γ = w1(a, q), γ′ = w1(a
′, �)(�, q′), and θ = R,

• γ = w1(b, �)(a, q)w2, γ′ = w1(b, q
′)(a′, �)w2, and θ = L,

• γ = (a, q)w2, γ′ = (�, q′)(a′, �)w2, and θ = L.

A sequence of configurations that is in accordance with �M is illustrated
in Fig. 2.1, provided ∆ contains at least the transitions (q0, �, a, R, q1),
(q1, �, b, L, q2), and (q2, a, a′, L, q3). We say thatM halts if there is w1, w2 ∈
(Σ × {�})∗ and a ∈ Σ such that (�, q0) �

∗
M w1(a, qf)w2.

Theorem 2.9. The following problem is undecidable:

Input: Turing machine M.

Question: Does M halt?

The problem described in Theorem 2.9 is (a variant of) the well-known halting
problem.

2.4 Bibliographic Notes

A comprehensive reference on recognizability and rationality of formal lan-
guages over words and posets is [96]. Computability, undecidability, and com-
plexity theory are the subject of [80]. A general introduction to formal lan-
guages, Turing machines, and computability is provided by [48].

3

Graphs, Logics, and Graph Acceptors

Directed graphs are the most general structures we consider in this book.
Many structures that will also be addressed, such as words and (graphs associ-
ated to) posets, can be embedded into graphs or at least have a corresponding
one-to-one graph representation.

3.1 Graphs

In the following, let Σ and C be alphabets, which contain the elements the
components of a graph are labeled with. Hereby, Σ is the supply of actions
that a system may execute. The actions will label the nodes of a graph, which
we will later refer to as events. The elements from C label (color) the edges
of a graph and provide a kind of control-flow information.

Definition 3.1 (Graph). A (directed) graph over (Σ, C) is a structure
(V, {��}�∈C , λ) where

• V is its finite set of nodes,
• the �� ⊆ V × V are disjoint binary relations on V , and
• λ : V → Σ is the (node-)labeling function.

Thus, we consider a node u ∈ V of a graph G = (V, {��}�∈C , λ) over
(Σ, C) to be labeled with a letter a ∈ Σ if λ(u) = a and we consider a pair
(u, v) ∈

⋃
�∈C �� to be labeled with �′ ∈ C if (u, v) ∈ ��′ . In the sequel,

we call � :=
⋃

�∈C �� the edge relation or the set of edges of G. Moreover,
we sometimes write ≤� for (��)

∗, abbreviate (��)
+ by <�, set ≤ to be the

relation �∗, and abbreviate �+ by <. We call G connected if, for any u, v ∈ V ,
(u, v) ∈ (� ∪ �−1)∗. The cardinality of G, denoted by |G|, is actually meant
to be the cardinality |V | of V . Moreover, for a subset Σ′ of Σ, we set |G|Σ′ to
be |λ−1(Σ′)|. Observe that |G|Σ = |G|. Given a ∈ Σ, we moreover abbreviate
|G|{a} with |G|a.

18 3 Graphs, Logics, and Graph Acceptors

The set of graphs over (Σ, C) is denoted by DG(Σ, C). Note that we
silently assume a graph (actually, its set of nodes) to be nonempty if it seems
more convenient, e.g., if we require a mapping on the set of nodes. However,
it will always be clear how to extend the setting accordingly to deal with the
empty graph.

Let B ∈ IN be a natural number. For G = (V, {��}�∈C , λ) ∈ DG(Σ, C), we
say that the degree of G is bounded by B if, for any u ∈ V , |{v ∈ V | u � v or
v � u}| ≤ B. Given a set K of graphs over (Σ, C), the degree of K is said to
be bounded by B if, for any G ∈ K, the degree of G is bounded by B. We say
that K has bounded degree if its degree is bounded by some B. By K[B], we
denote the class of graphs G ∈ K such that the degree of G is bounded by B.

It will be useful to define extended graphs, whose nodes are equipped with
an additional labeling. Let Q be a nonempty and finite set. A (Q-)extended
graph over (Σ, C) is a graph (V, {��}�∈C , λ) over (Σ×Q, C), i.e, λ is a mapping
V → Σ×Q. Note that λ can be seen as a pair (λ′, ρ) of mappings V → Σ and
V → Q, respectively. Given a class K of graphs over (Σ, C) and a (possibly
empty) finite set Q, we define 〈K, Q〉 to be K if Q is empty and, otherwise,
to be the set of Q-extended graphs (V, {��}�∈C , (λ, ρ)) over (Σ, C) such that
(V, {��}�∈C , λ) ∈ K. If Q is nonempty and we are given G = (V, {��}�∈C , λ) ∈
DG(Σ, C) and a mapping ρ : V → Q, then we write (G, ρ) to denote the
extended graph (V, {��}�∈C , (λ, ρ)) ∈ 〈DG(Σ, C), Q〉.

3.2 Monadic Second-Order Logic over Graphs

We recall the notion of monadic second-order (MSO) logic over graphs, i.e.,
in its most general case, which then carries over to the more specific cases
of MSO logic over words, traces, and message sequence charts. Fragments
of MSO logic will provide logical characterizations of respective automata
models. For a comprehensive overview of MSO logics, see [39].

Throughout the book, we will use supplies Var = {x, y, . . . , x1, x2, . . .} of
individual variables and VAR = {X, Y, . . . , X1, X2, . . .} of set variables.

Definition 3.2 (Monadic Second-Order Logic). The set MSO(Σ, C) of
monadic second-order formulas over (Σ, C) (or MSO(Σ, C)-formulas) is built
up from the atomic formulas

• λ(x) = a (with x ∈ Var and a ∈ Σ),
• x �� y (with x, y ∈ Var and � ∈ C),
• x ∈ X (with x ∈ Var and X ∈ VAR), and
• x = y (with x, y ∈ Var),

and, furthermore, allow the boolean connectives ¬, ∨, ∧, →, and ↔ and the
quantifiers ∃ and ∀, which can be applied to either kind of variable and are
called individual (first-order) and set (second-order) quantifiers, respectively.
More precisely, if ϕ and ψ are formulas from MSO(Σ, C), then so are ¬ϕ,

3.2 Monadic Second-Order Logic over Graphs 19

ϕ∨ψ, ϕ∧ψ, ϕ→ ψ, ϕ↔ ψ, ∃xϕ, ∀xϕ, ∃Xϕ, and ∀Xϕ (where x ∈ Var and
X ∈ VAR).

Let G = (V, {��}�∈C , λ) be a graph over (Σ, C). Given an interpretation
function I, which assigns to an individual variable x an event I(x) ∈ V and
to a set variable X a set of events I(X) ⊆ V , the satisfaction relation G |=I ϕ
for a formula ϕ ∈MSO(Σ, C) is given by

• G |=I λ(x) = a if λ(I(x)) = a,
• G |=I x �� y if I(x) �� I(y),
• G |=I x ∈ X if I(x) ∈ I(X),
• G |=I x = y if I(x) = I(y),

• G |=I ¬ϕ if not G |=I ϕ,
• G |=I ϕ ∨ ψ if G |=I ϕ or G |=I ψ,
• G |=I ϕ ∧ ψ if G |=I ϕ and G |=I ψ,
• G |=I ϕ→ ψ if not G |=I ϕ or G |=I ψ,
• G |=I ϕ↔ ψ if G |=I ϕ iff G |=I ψ,

• G |=I ∃xϕ if there is u ∈ V such that G |=I[x/u] ϕ,
• G |=I ∀xϕ if, for any u ∈ V , G |=I[x/u] ϕ,
• G |=I ∃Xϕ if there is V ′ ⊆ V such that G |=I[X/V ′] ϕ, and
• G |=I ∀Xϕ if, for any V ′ ⊆ V , G |=I[X/V ′] ϕ.

Here, I[x/u] is the mapping that coincides with I except in x, which is mapped
by I[x/u] to u. Accordingly, I[X/V ′] maps X to V ′ and, otherwise, coincides
with I.

To save brackets, we stipulate that, as usual, the unary operators bind
stronger than the binary ones. Moreover, ∧ binds stronger than ∨, which, in
turn, binds stronger than the combinators → and ↔.

We introduce some abbreviations and let x � y stand for the MSO(Σ, C)-
formula

∨
�∈C x �� y. Moreover, for some � ∈ C, x ≤� y and x ≤ y will

abbreviate

∀X (x ∈ X ∧ ∀z∀z′ ((z ∈ X ∧ z �� z′)→ z′ ∈ X)→ y ∈ X)

and, respectively,

∀X (x ∈ X ∧ ∀z∀z′ ((z ∈ X ∧ z � z′)→ z′ ∈ X)→ y ∈ X)

whereas x <� y and x < y are shorthands for the formulas x ≤� y ∧ ¬(x = y)
and x ≤ y ∧ ¬(x = y), respectively. Finally, given Σ′ ⊆ Σ, λ(x) ∈ Σ′

shall abbreviate
∨

a∈Σ λ(x) = a. Note that x ≤ y could have been defined
equivalently by

∃X (x ∈ X ∧ y ∈ X ∧ ∀z(z ∈ X → z = y ∨ ∃z′(z′ ∈ X ∧ z � z′)))

as well, which is an existential MSO formula as explained below.

20 3 Graphs, Logics, and Graph Acceptors

If we consider sentences, i.e., formulas without free variables, we accord-
ingly replace |=I with |=, as satisfaction of a sentence is independent of a
given interpretation function.

For an MSO(Σ, C)-formula ϕ, the notation ϕ(x1, . . . , xm, X1, . . . , Xn)
shall indicate that at most x1, . . . , xm, X1, . . . , Xn occur free in ϕ. The frag-
ment of MSO(Σ, C) that does not make use of any set quantifier is the set of
first-order formulas over (Σ, C) and denoted by FO(Σ, C). An MSO(Σ, C)-
formula is called existential if it is of the form

∃X1 . . .∃Xnϕ(X1, . . . , Xn, Y)

where Y is a block of second-order variables and ϕ(X1, . . . , Xn, Y) is contained
in FO(Σ, C). Throughout the book, we let EMSO(Σ, C) denote the class of
existential MSO(Σ, C)-formulas.

Concerning second-order variables, we would generally like to distinguish
formulas by their quantifier-alternation depth. Namely, for k ∈ IN≥1, Σk(Σ, C)
shall contain the MSO(Σ, C)-formulas of the form

∃X1∀X2 . . .∃/∀Xkϕ(X1, . . . , Xk, Y)

with first-order kernel ϕ(X1, . . . , Xk, Y) (the Xi and Y are blocks of second-
order variables). Note that Σ1(Σ, C) and EMSO(Σ, C) coincide.

Let us furthermore introduce a variant of MSO(Σ, C): choosing our atomic
entities to be

• λ(x) = a,
• x ≤ y,
• x ∈ X, and
• x = y

yields in the canonical manner the logics MSO(Σ, C)[≤], EMSO(Σ, C)[≤],
Σk(Σ, C)[≤], and FO(Σ, C)[≤], respectively. The semantics of x ≤ y with
respect to a given graph G = (V, {��}�∈C , λ) ∈ DG(Σ, C) and a corresponding
interpretation function I is determined by G |=I x ≤ y if I(x) �∗ I(y). Other
logics arise in a similar manner. Restricting to the ordering relation � might
lead to the logic EMSO(Σ, C)[�], for example. Otherwise, it will be clear from
the context, which predicates are supported by a logic and which are not.

We introduce another abbreviation: for set variables X1, . . . , Xn (n ≥ 1),
the first-order formula

partition(X1, . . . , Xn) :=
(
∀x

∨
i∈{1,...,n}

x ∈ Xi

)
∧

(
∀x

∧
1≤i<j≤n

¬(x ∈ Xi ∧ x ∈ Xj)
)

will subsequently formalize that the set of nodes of the graph at hand can be
partitioned into sets X1, . . . , Xn.

Let K be a set of graphs over (Σ, C). For an MSO(Σ, C)-sentence ϕ,
the language of ϕ relative to K, denoted by LK(ϕ), is the set of graphs

3.2 Monadic Second-Order Logic over Graphs 21

G ∈ K with G |= ϕ. A formula ϕ(x1, . . . , xm, X1, . . . , Xn) ∈ MSO(Σ, C)
(potentially with free variables) actually defines a language of graphs whose
labelings are enriched by tuples from {0, 1}m+n. So let 〈K, {0, 1}m,n〉 de-
note K if m = n = 0 and, otherwise, the set of {0, 1}m+n-extended graphs
(V, {��}�∈C , (λ, ρ)) ∈ DG(Σ×{0, 1}m+n, C) such that, for any i ∈ {1, . . . , m},
there is exactly one u ∈ V with ρ(u)[i] = 1 (where ρ(u)[i] yields the i-th com-
ponent of ρ(u)). Canonically, we will abbreviate 〈K, {0, 1}0,n〉 by 〈K, {0, 1}n〉.
We may synonymously write both LK(ϕ) and L〈K,{0,1}m,n〉(ϕ) to denote the
language of ϕ relative to K, which is then a subset of 〈K, {0, 1}m,n〉. More
precisely, an extended graph G = (V, {��}�∈C , (λ, ρ)) ∈ 〈K, {0, 1}m,n〉 satis-
fies ϕ if we have (V, {��}�∈C , λ) |=IG

ϕ where IG(xi) = u if ρ(u)[i] = 1 and
u ∈ IG(Xi) if ρ(u)[m + i] = 1.

For F ⊆ MSO(Σ, C) and sets L,K ⊆ DG(Σ, C), L is called FK-definable
if L = LK(ϕ) for some sentence ϕ ∈ F. The induced classes of MSO(Σ, C)K-,
EMSO(Σ, C)K-, Σk(Σ, C)K-, and FO(Σ, C)K-definable graph languages are
denoted by MSO(Σ, C)K, EMSO(Σ, C)K, LK(Σk(Σ, C)), and FO(Σ, C)K,
respectively. Accordingly, with respect to the alternative predicate sym-
bol ≤, we accordingly obtain further classes of graph languages, namely
MSO(Σ, C)[≤]K, EMSO(Σ, C)[≤]K, LK(Σk(Σ, C)[≤]), and FO(Σ, C)[≤]K.

For K ⊆ DG(Σ, C), we say that the monadic quantifier-alternation hi-
erarchy over K is infinite if the sets LK(Σk(Σ, C)), k = 1, 2, . . ., form an
infinite strict hierarchy. In general, the classes of Σk(Σ, C)DG(Σ,C)-definable
languages form an infinite hierarchy [65, 66]. In other words, the more al-
ternation of second-order variables is allowed, the more expressive formulas
become.

It may be the case that the set of node labelings or the set of edge labelings
is a singleton so that we do not need to explicitly refer to Σ and C. In that
case, we speak of graphs over (Σ,−) or over (−, C) and respectively write,
for example, DG(Σ,−) and FO(−, C)[≤]K. If C is a singleton, we may even
speak of a graph over Σ and write, for example, DG(Σ) instead of DG(Σ,−).
Moreover, if the labeling alphabets are clear from the context, we often omit
the reference to Σ and C completely and write, for instance, DG, EMSO,
MSOK, or FO[≤]K.

Besides MSO(Σ, C)[≤] and corresponding sublogics, we will consider
MSO0(Σ, C), another slightly modified logic, which, in contrast to the logic
MSO(Σ, C)[≤], has in general the same expressive power as MSO(Σ, C). Its
atomic entities are

• λ(X) ⊆ {a},
• X �� Y ,
• X ⊆ Y , and
• Sing(X),

where, as usual, a ∈ Σ, � ∈ C, and X, Y ∈ VAR. Moreover, only second-order
quantifiers are allowed.

22 3 Graphs, Logics, and Graph Acceptors

The meaning of an MSO0(Σ, C)-formula is the expected one, i.e., given a
graph G = (V, {��}�∈C , λ) ∈ DG(Σ, C) and an interpretation I,

• G |=I λ(X) ⊆ {a} if, for any u ∈ I(X), λ(u) = a,
• G |=I X �� Y if I(X) and I(Y) are singletons {u} and {v},

respectively, such that u �� v,
• G |=I X ⊆ Y if I(X) ⊆ I(Y), and
• G |=I Sing(X) if I(X) is a singleton.

Following our convention, MSO0(Σ, C)K with K ⊆ DG(Σ, C) denotes the
class of MSO0(Σ, C)K-definable graph languages. It is easy to construct from
an MSO(Σ, C)- an equivalent MSO0(Σ, C)-sentence and vice versa, which
leads us to the following lemma.

Lemma 3.3.
MSODG = (MSO0)DG

Exercise 3.4.

(a) Prove Lemma 3.3.
(b) Verify that, for any class K ⊆ DG, MSOK = (MSO0)K.

Let us discuss further relations between the language classes proposed so
far.

Lemma 3.5. If L ⊆ DG is MSODG-definable, then it is (Σk)DG-definable for
some k ≥ 1.

Proof. From a given MSO-sentence ϕ, we first build an MSO0-sentence ϕ′ in
prenex normal form that is equivalent to ϕ relative to DG. In particular, each
first-order quantifier has been replaced with a second-order one, while the
resulting second-order variables X have been relativized by the (first-order
definable) predicate Sing(X). First-order definability of the atomic predicates
occurring in ϕ′ then leads to some Σk-formula for suitable k. �

Lemma 3.6.
MSO[≤]DG ⊆ MSODG

Proof. In an MSO[≤]-formula, replace any occurrences of x ≤ y with

∀X (x ∈ X ∧ ∀z∀z′ ((z ∈ X ∧ z � z′)→ z′ ∈ X)→ y ∈ X)

to obtain an equivalent MSO-formula. �

However, the inverse does not hold in general, i.e., the collection of relations
�� is not necessarily expressible in terms of ≤. As we will see, the above
neither holds for the existential nor the first-order fragment of MSO.

Trivially, the sets of FO-, EMSO-, and MSO-definable languages form a
hierarchy. The inverse inclusions do not hold in general. However, we will
identify classes of graphs for which EMSO logic is already as expressive as
MSO logic.

3.3 Hanf’s Theorem 23

Lemma 3.7.

(a) FODG ⊆ EMSODG ⊆ MSODG,
(b) FO[≤]DG ⊆ EMSO[≤]DG ⊆ MSO[≤]DG.

3.3 Hanf’s Theorem

Besides formulas, graphs themselves may provide a framework to specify graph
properties. For instance, we might be interested in the set of those graphs in
which a given pattern occurs at least, say, n ∈ IN times. A pattern H hereby
specifies the local neighborhood around a distinguished center γ where the size
of the neighborhood is constituted by a natural number R ∈ IN, the radius of
H, which restricts the distance of any node of H to γ.

Let us make this idea more precise and let R be a natural number. Given
a graph G = (V, {��}�∈C , λ) ∈ DG(Σ, C) and nodes u, v ∈ V , the distance
dG(v, u) from v to u in G is ∞ if it holds (u, v) �∈ (� ∪ �−1)∗ and, other-
wise, the minimal natural number k such that there is a sequence of elements
u0, . . . , uk ∈ V with u0 = u, uk = v, and ui � ui+1 or ui+1 � ui for each
i ∈ {0, . . . , k − 1}. Sometimes, if it is clear from the context, we omit the
subscript G, just writing d(v, u).

Definition 3.8 (R-Sphere). An R-sphere over (Σ, C) is a structure H =
(V, {��}�∈C , λ, γ) where (V, {��}�∈C , λ) is a graph over (Σ, C) and γ ∈ V is
a designated sphere center such that, for any u ∈ V , dH(u, γ) ≤ R (in slight
abuse of notation, the distance from one node to another can be given with
respect to a sphere as well).

c

a

e

b

d

f

g

2

2

1

1

2

1

b

a

a

b

b

c

c

(a)

u

1

1
2

2

2

1

1

2

1

b

a

a

b

b

c

c

a

(b)

Fig. 3.1. A 2-sphere over ({a, b, c}, {1, 2})

Let G = (V, {��}�∈C , λ) ∈ DG(Σ, C). For u ∈ V , we set the R-sphere of
G around u, denoted by R-Sph(G, u), to be (V ′, {�′

�}�∈C , λ′, u) where V ′ =

24 3 Graphs, Logics, and Graph Acceptors

{v ∈ V | dG(v, u) ≤ R}, �′
� = �� ∩ (V ′ × V ′) for each � ∈ C, and λ′ is the

restriction of λ to V ′. Given an R-sphere H over (Σ, C), we define |G|H to be
|{u ∈ V | R-Sph(G, u) ∼= H}|, i.e., the number of occurrences of H in G. (Here
and henceforth, ∼= stands for the isomorphism relation.)

A 2-sphere over ({a, b, c}, {1, 2}) is shown in Fig. 3.1a where the sphere
center is depicted as a rectangle. It precisely deals with the 2-sphere of the
graph from Fig. 3.1b around u.

Given K ⊆ DG(Σ, C), we set R-Sph(K), the set of R-spheres that arise
from K, to be {R-Sph(G, u) | G = (V, {��}�∈C , λ) ∈ K, u ∈ V }.

In the context of spheres, the rank of a first-order formula will play a
crucial role. The rank rank(ϕ) of ϕ ∈ FO(Σ, C) is the maximal number of
nested first-order quantifiers. Formally, it is defined inductively via

• rank(ϕ) = 0 if ϕ is atomic,
• rank(¬ϕ) = rank(ϕ),
• rank(ϕ θ ψ) = max{rank(ϕ), rank(ψ)} for θ ∈ {∨,∧,→,↔},
• rank(∃xϕ) = rank(ϕ) + 1, and
• rank(∀xϕ) = rank(ϕ) + 1.

For k ∈ IN, in the following, let FOk(Σ, C) comprise the formulas ϕ ∈
FO(Σ, C) such that rank(ϕ) ≤ k.

The rank of a first-order sentence ϕ allows us to compute a radius R such
that the satisfaction of ϕ in a graph G is determined solely by the mapping
that reveals, for any R-sphere H, how often H occurs in G. In other words,
when, for any R-sphere H, we are told how often H occurs in G as a pattern,
we can say whether G |= ϕ or G �|= ϕ. Basically, this what we know as Hanf’s
theorem. Before we state this central theorem formally, we need to introduce
two equivalence relations. The first is parameterized by a natural number k
and relates graphs that cannot be distinguished by formulas of rank at most
k. The second counts the number of spheres in a graph up to some threshold.

Definition 3.9 (FO-k-Equivalence). Let k ∈ IN. Given graphs G1, G2 ∈
DG(Σ, C), we write G1 ≡k G2 if, for any sentence ϕ ∈ FOk(Σ, C), we have
G1 |= ϕ iff G2 |= ϕ.

Lemma 3.10. For any k ∈ IN, ≡k has finite index, i.e., {[G]≡k
| G ∈

DG(Σ, C)} is a finite set.

Proof. We show by induction on k that, for any natural number m ∈ IN, it
holds that {L〈DG(Σ,C),{0,1}m,0〉(ϕ) | ϕ(x1, . . . , xm) ∈ FOk(Σ, C)} is a finite set,
which implies the lemma. Of course, there are only finitely many atomic first-
order formulas and finitely many of their boolean combinations up to logical
equivalence. Moreover, any formula from FOk+1(Σ, C) with at most m free
individual variables can be written as the boolean combination of formulas of
the form ∃xm+1ψ with ψ(x1, . . . , xm, xm+1) ∈ FOk(Σ, C). By the induction
hypothesis, we have that {L〈DG(Σ,C),{0,1}m+1,0〉(ψ

′) | ψ′(x1, . . . , xm, xm+1) ∈
FOk(Σ, C)} is finite and, thus, so is {L〈DG(Σ,C),{0,1}m,0〉(ϕ) | ϕ(x1, . . . , xm) ∈
FOk+1(Σ, C)}. �

3.3 Hanf’s Theorem 25

The union of relations ≡k is complete for characterizing FO-definability:

Lemma 3.11. Let L ⊆ DG(Σ, C). We have L ∈ FO(Σ, C)DG iff there is
some k ∈ IN such that L is the union of ≡k-equivalence classes.

Exercise 3.12. Prove Lemma 3.11.

Definition 3.13 (Threshold Equivalence). Let R, t ∈ IN. Given graphs
G1, G2 ∈ DG(Σ, C), we write G1 �R,t G2 if, for any R-sphere H over (Σ, C),
either

• |G1|H = |G2|H or
• both |G1|H ≥ t and |G2|H ≥ t.

In other words, �R,t distinguishes graphs on the basis of the number of R-
spheres up to some threshold t.

Exercise 3.14. Let B ∈ IN. Show that, for any R, t ∈ IN, �R,t has finite
index if we consider only graphs whose degree is bounded by B.

Theorem 3.15 (Hanf [41]). Let K ⊆ DG(Σ, C) be a class of bounded degree.
For any k ∈ IN, one can compute R, t ∈ IN such that, for any G1, G2 ∈ K,

G1 �R,t G2 implies G1 ≡k G2

A proof of Theorem 3.15 can be found in [94]. There, given k ∈ IN, R is
determined to be 3k and t is determined to be k · c where c is the maximal
size of a 3k-sphere.

Thus, threshold equivalence may be used to show that a property is not
expressible in first-order logic. More precisely, given L,K ⊆ DG(Σ, C) where
K has bounded degree, L �∈ FO(Σ, C)K if, for any R, t ∈ IN, we can find
G1 ∈ L and G2 ∈ K \ L such that G1 �R,t G2.

Basically, Hanf’s Theorem states that any first-order sentence can be
rephrased as a boolean combination of conditions “R-sphere H occurs at least
n ∈ IN times”. We would like to put this idea into a formal framework and first
let O be an arbitrary set (of objects). A pair (o, n) ∈ O × IN shall henceforth
represent the statement “o occurs at least n ∈ IN times” and will therefore be
written more suggestively as o ≥ n. In the following, those conditions will be
put together towards boolean combinations.

In general, given a set O and a natural number t ∈ IN, the set Cond(O, t)
of occurrence formulas or occurrence conditions over O and t is inductively
defined via

• O × {0, . . . , t} ⊆ Cond(O, t),
• ¬α ∈ Cond(O, t) if α ∈ Cond(O, t),
• α1 ∨ α2 ∈ Cond(O, t) if α1, α2 ∈ Cond(O, t), and
• α1 ∧ α2 ∈ Cond(O, t) if α1, α2 ∈ Cond(O, t).

26 3 Graphs, Logics, and Graph Acceptors

An occurrence formula α ∈ Cond(O, t) is canonically interpreted over a map-
ping m : O → IN. Precisely,

• m |= o ≥ n if m(o) ≥ n,
• m |= ¬α if not m |= α,
• m |= α ∨ β if m |= α or m |= β, and
• m |= α ∧ β if m |= α and m |= β.

Let S be a set of R-spheres over (Σ, C). An occurrence formula from
Cond(Σ, t) is satisfied by the graph G ∈ DG(Σ, C), written G |= α, if α is
satisfied by the mapping that assigns |G|a to any a ∈ Σ. Accordingly, an oc-
currence formula α ∈ Cond(S, t) is satisfied by the graph G if it is satisfied by
the mapping that assigns to each R-sphere H ∈ S the natural number |G|H.
Relative to a set of graphs K, the latter notion gives rise to the class of locally
threshold testable graph languages:

Definition 3.16 (Locally Threshold Testable). A set L ⊆ DG(Σ, C) is
called locally threshold testable relative to a set K ⊆ DG(Σ, C) if there exist
R, t ∈ IN and α ∈ Cond(R-Sph(DG(Σ, C)), t) such that L = {G ∈ K | G |= α}.
The corresponding language class is denoted by LT T (Σ, C)K.

Theorem 3.17. For any class K ⊆ DG(Σ, C) of bounded degree and any
L ⊆ K, L ∈ FO(Σ, C)K implies L ∈ LT T (Σ, C)K.

Proof. Suppose L ∈ FO(Σ, C)K for some K ⊆ DG(Σ, C) whose degree is
bounded by, say, B ∈ IN. There exist k ∈ IN and a sentence ϕ ∈ FOk(Σ, C)
such that L = LK(ϕ). According to Lemmata 3.10 and 3.11, L is the finite
union L1 ∪ . . . ∪ Ll of ≡k-equivalence classes. In turn, there are R, t ∈ IN
such that any set Li, i = 1, . . . , l, is the finite union Li1 ∪ . . . ∪ Lili

of �R,t-equivalence classes (cf. Theorem 3.15). Any �R,t-equivalence class
will be captured by an occurrence condition from Cond(R-Sph(DG[B]), t).
So let i ∈ {1, . . . , l} and j ∈ {1, . . . , li} and suppose G ∈ Lij

. Then,
αij
∈ Cond(R-Sph(DG[B]), t) capturing Lij

shall be given as follows:

αij
=

∧
H∈R-Sph(DG[B])

|G|H≥t

H ≥ t ∧
∧

H∈R-Sph(DG[B])
|G|H=n<t

(H ≥ n ∧ ¬ (H ≥ n + 1))

Note that αij
does not depend on the choice of G as a representative of Lij

,
i.e., we may choose an arbitrary G ∈ Lij

. Finally, set α to be

α =
∨

i∈{1,...,l}
j∈{1,...,li}

αij

Clearly, we have L = {G ∈ K | G |= α}, which concludes the proof. �

3.4 Graph Acceptors 27

The next step towards a logically founded automata theory over graphs
is to establish a connection between EMSO-definable and locally threshold
testable languages. So let us introduce some further notions and let n ≥ 1.
Given an extended graph G = (V, {��}�∈C , λ) ∈ DG(Σ × {0, 1}n, C) over
(Σ, C), the projection of G is defined to be h(G) := (V, {��}�∈C , λ′) ∈
DG(Σ, C) where, for any u ∈ V , we have λ′(u) = a if λ(u) = (a, (b1, . . . , bn))
for some b1, . . . , bn ∈ {0, 1}. The projection function h is canonically extended
towards graph languages L ⊆ DG(Σ×{0, 1}n, C), i.e., h(L) := {h(G) | G ∈ L}.
Recall that a formula ϕ(X1, . . . , Xn) ∈ MSO(Σ, C) can be interpreted with
respect to G by inferring from the additional labelings an interpretation func-
tion IG, which assigns to variable Xi the set of all those nodes whose labeling
in the i-th component equals 1 so that we may write G |= ϕ(X1, . . . , Xn) if
h(G) |=IG

ϕ(X1, . . . , Xn).
The following proposition basically states that a language is EMSO-

definable iff it is the projection of some locally threshold testable set.

Proposition 3.18 ([92]). For any class K ⊆ DG(Σ, C) of bounded degree,
EMSO(Σ, C)K =

⋃
n≥1{h(L) | L ∈ LT T (Σ × {0, 1}n, C)〈K,{0,1}n〉}.

Proof. Recall that a language L ⊆ DG(Σ, C) is EMSO(Σ, C)K-definable iff
it is the language of some EMSO(Σ, C)-sentence ∃X1 . . .∃Xnϕ(X1, . . . , Xn)
(where, without loss of generality, we can assume that n ≥ 1) with first-
order kernel ϕ. As ϕ can be seen as a sentence from FO(Σ × {0, 1}n, C)
(replace any x ∈ Xi with

∨
bi=1 λ(x) = (a, (b1, . . . , bn)), L〈K,{0,1}n〉(ϕ) ∈

FO(Σ×{0, 1}n, C)〈K,{0,1}n〉 is, according to Theorem 3.17, a locally threshold
testable set, whose projection h(L〈K,{0,1}n〉(ϕ)) coincides with L. �

3.4 Graph Acceptors

Graph acceptors [91, 93] are a generalization of finite automata to graphs.
They are known to be expressively equivalent to EMSO logic with respect to
graphs of bounded degree. A graph acceptor works on a graph as follows: it
first assigns to each node one of its control states and then checks if the local
neighborhood of each node (incorporating the state assignment) corresponds
to a pattern from a finite supply of spheres.

Definition 3.19 (Graph Acceptor [91, 93]).
A graph acceptor over (Σ, C) is a structure B = (Q, R, S,Occ) where

• Q is its nonempty finite set of states,
• R ∈ IN is the radius,
• S is a nonempty finite set of R-spheres over (Σ ×Q, C), and
• Occ ∈ Cond(S, t) for some t ∈ IN.

28 3 Graphs, Logics, and Graph Acceptors

a b a b

a

a

a

b a

a

b

a

a b a b

b

a

b

b a

b

b

b

Fig. 3.2. A graph acceptor over {a, b}

The set of spheres S of a graph acceptor over ({a, b},−) with R = 1 is
depicted in Fig. 3.2 (here, the set of states is supposed to be a singleton).

So let B = (Q, R, S,Occ) be a graph acceptor over (Σ, C). A run of B on
a graph G = (V, {��}�∈C , λ) ∈ DG(Σ, C) is a mapping ρ : V → Q such that,
for each u ∈ V , the R-sphere of (V, {��}�∈C , (λ, ρ)) around u is isomorphic to
some H ∈ S. We call ρ accepting if (G, ρ) |= Occ. The language of B relative to
a class K ⊆ DG(Σ, C), denoted by LK(B), is the set of graphs G ∈ K on which
there is an accepting run of B. Moreover, we denote by GA(Σ, C)K (GAK if
Σ and C are clear from the context) the class {L ⊆ K | L = LK(B) for some
graph acceptor B over (Σ, C)}.

A run of the graph acceptor from Fig. 3.2 is depicted in Fig. 3.3 (again,
the only state is omitted).

An interesting class of graph languages distinguishes those sets that are
recognized by some graph acceptor that employs only k-spheres for some k ∈
IN. Accordingly, we denote by k-GA(Σ, C)K or k-GAK the class {L ⊆ K | L =
LK(B) for some graph acceptor B = (Q, R, S,Occ) over (Σ, C) with R = k}.

a

a

b

a

b

b

a

a

b

a

b

b

a

a

b

a

b

b

a

a

b

a

b

b

Fig. 3.3. The run of a graph acceptor

3.4 Graph Acceptors 29

Lemma 3.20. For any k ∈ IN≥1 and any class K ⊆ DG of bounded degree,

k-GAK ⊆ (k + 1)-GAK

Exercise 3.21. Prove Lemma 3.20.

Conversely, however, the radius of some graph acceptor cannot be reduced
arbitrarily.

Lemma 3.22. In general,

1-GAK � GAK

The proof of Lemma 3.22 is deferred to Sect. 3.6.
Given K ⊆ DG(Σ, C), GA(Σ, C)−K shall denote the class of sets L ⊆ K such

that there is a graph acceptor B = (Q, R, S,Occ) over (Σ, C) with both Occ =
H ≥ 0 for some H ∈ S and (L = LK(B) or L = LK(B) \ {(∅, {∅}�∈C , ∅)}).
The latter is because a graph acceptor “without occurrence constraints” has
no means to reject the empty graph, unless it is not contained in K. The class
k-GA(Σ, C)−K with k ∈ IN is defined accordingly.

Lemma 3.23. In general, 1-GAK \ GA
−
K is not empty.

Proof. Consider graphs G1 and G2 over ({a, b},−) where G1 and G2 each con-
sist of one node, which is labeled with a and b, respectively. Then, {G1, G2} is
contained in 1-GADG({a,b},−) \ GA

−
DG({a,b},−). On the one hand, any graph ac-

ceptor without occurrence constraint recognizing both G1 and G2 also admits
an accepting run on the union of G1 and G2 (which is obtained in the obvious
manner). On the other hand, {G1, G2} is the language of some graph acceptor
with radius 1 (even radius 0) where an occurrence constraint ensures that the
union of G1 and G2 is excluded from the recognized language. �

Note that, considering a graph acceptor relative to the class DG of all
graphs, its spheres themselves are contained in DG. It might be worth not-
ing that such a coincidence does not necessarily hold for arbitrary classes of
graphs, i.e., applying graph acceptors to a subclass K of DG, their spheres
might still require a more general structure than K admits. But obviously, it
always suffices to restrict to those spheres that can be embedded into some
graph from K.

Let us now compare EMSO logic to the formalism of graph acceptors. The
following theorem provides the basis for characterizations of further automata
models on graphs.

Theorem 3.24 (Thomas [92, 93]). For any class K ⊆ DG of bounded de-
gree,

EMSOK = GAK

Proof. The equivalence directly follows from Proposition 3.18. In particular,
the number of states of a graph acceptor simulating a given existential sentence
∃X1 . . .∃Xnϕ(X1, . . . , Xn) with first-order kernel ϕ depends on the number
n of set quantifiers. �

30 3 Graphs, Logics, and Graph Acceptors

3.5 Directed Acyclic Graphs

Graphs will primarily serve as a convenient representation of partial orders,
which, in turn, are a general model for the behavior of a distributed system.
This view motivates the following definition:

Definition 3.25 (Directed Acyclic Graph). A directed acyclic graph
(dag) over (Σ, C) is a graph (V, {��}�∈C , λ) ∈ DG(Σ, C) such that � is ir-
reflexive and ≤ is a partial order.

The set of all those dags is denoted by DAG(Σ, C). A useful subclass of
DAG(Σ, C), denoted by DAGH(Σ, C), is the set of graphs (V, {��}�∈C , λ) ∈
DAG(Σ, C) such that � = �, i.e., (V, �) is the Hasse diagram of some par-
tially ordered set. Usually, this will be required if the set of edge labelings is
a singleton. Recall that, throughout the book, the nodes of a graph are also
called events executing actions, which are given by their node labeling.

Consider the graph from Fig. 3.4a. It is contained in DAGH({a, b}) (recall
that we may omit “−” if there are no edge labelings), as its edge relation is
a minimal one to generate some partial order. In contrast, the graph from
Fig. 3.4b, though it is contained in DAG({a, b}), is not minimal in this sense,
as there is an edge from u to w that is already implicitly present in terms
of (u, v) and (v, w). Thus, Fig. 3.4b illustrates a dag that is not contained
in DAGH({a, b}). Finally, the graph from Fig. 3.4c is not even contained in
DAG({a, b}), as it is not acyclic. However, it is a member of DG({a, b}).

u

a

b a

a

b

a

(a)

u

v

w

a

b a

a

b

(b)

a

b a

a

b

(c)

Fig. 3.4. Graphs over ({a, b},−)

For G = (V, {��}�∈C , λ) ∈ DAG(Σ, C) and u ∈ V , let G ⇓ u stand for
the downwards closure of G with respect to u, i.e., for (V ′, {�′

�}�∈C , λ′) ∈
DAG(Σ, C) where V ′ = {v ∈ V | v ≤ u}, �′

� = �� ∩ (V ′ × V ′) for any � ∈ C,
and λ′ = λ|V ′ , i.e., λ′ is the restriction of λ to the nodes from V ′. The strict
downwards closure of G with respect to u, denoted by G ↓ u, is obtained in
the same way as the downwards closure, now taking V ′ = {v ∈ V | v < u}
as a starting point. To exemplify downwards closure, consider once again the

3.6 Pictures and Grids 31

graph G from Fig. 3.4a: the downwards closure of G with respect to u is given
by Fig. 3.5a, its strict downwards closure is depicted in Fig. 3.5b.

a

b a

a

(a)

a

b a

(b)

Fig. 3.5. The downwards closure of a graph

3.6 Pictures and Grids

An important class of graphs is provided by pictures. Many results on pictures
will be used to achieve the corresponding results in the framework of dags and
message sequence charts. Once more, pictures are a special case of graphs.
However, while the node labeling is arbitrary, an edge of a picture is labeled
with either 1 or 2. So let Σ be an alphabet in the following and, given n ∈ IN≥1,
let [n] denote the set {1, . . . , n}.

Definition 3.26 (Picture). A picture over Σ is a graph

([n]× [m], S1, S2, λ) ∈ DAGH(Σ, {1, 2})

over (Σ, {1, 2}) with n, m ∈ IN≥1 where S1, S2 ⊆ ([n]× [m])2 contain the pairs
((i, j), (i+1, j)) ∈ ([n]× [m])2 and ((i, j), (i, j+1)) ∈ ([n]× [m])2, respectively,
and λ is a mapping [n]× [m]→ Σ.

The set of pictures over Σ is denoted by P(Σ) (P if Σ is clear from the
context). Note that, in the context of pictures, we use S1 and S2 rather than
�1 and �2 to denote the edge relations, respectively, because this is more
common.

For example, Fig. 3.6 shows a picture over {a, b, c} with n = 3 rows and
m = 8 columns. In addition, the vertical arrows are labeled with 1 while
the horizontal ones are labeled with 2, which is omitted here for the sake of
readability.

Though tiling systems, where a tiling is a square of length two rather
than a graph around a center (see [38] for an overview), is arguably the more
natural automata model for pictures, we stick to the familiar terrain of graph
acceptors. As with traces and message sequence charts (cf. Chaps. 6 and 8),
graph acceptors yield different results than the general case if they are applied
to pictures rather than arbitrary graphs.

32 3 Graphs, Logics, and Graph Acceptors

a

b

b

b

a

b

a

b

b

c

c

c

b

a

b

a

b

b

a

b

b

b

a

b

Fig. 3.6. A picture over {a, b, c}

Lemma 3.27 ([92]).
1-GA−

P(Σ) = GAP(Σ)

Again, the proof of Lemma 3.27 is a simple reduction involving a blow-up
in the number of states of the graph acceptor. It is left to the reader as an
exercise.

Theorem 3.28 ([92]). In general, FO[≤]P(Σ) and EMSOP(Σ) are incompa-
rable with respect to inclusion.

Proof. Let Σ = {a, b, c}. The set L of pictures over Σ that consist of one
single column of even length is EMSOP(Σ)-definable. But as the set of words
over Σ of even length is not FO[≤]-definable relative to Σ∗, L cannot be
FO[≤]P(Σ)-definable.

Conversely, assume L ⊆ P(Σ) to be the set of pictures over Σ that can be
considered as the concatenation GCH of some picture C ∈ P({c}) consisting
of one single c-labeled column and pictures G, H ∈ P({a, b}) such that the
sets of different column labelings of G and H coincide. A picture that belongs
to L is depicted in Fig. 3.6. Its unique division into G, C, and H as postu-
lated above and illustrated in Fig. 3.7 gives rise to the set of column words
{abb, bab}, which represents both G and H. In fact, L is FO[≤]P(Σ)-definable.

a

b

b

b

a

b

a

b

b

c

c

c

b

a

b

a

b

b

a

b

b

b

a

b

Fig. 3.7. Dividing a picture over {a, b, c}

3.6 Pictures and Grids 33

A corresponding sentence just has to require that, for any node u on the first
row, there has to be a suitable counterpart v that is also located on the first
row, but on the opposite side of the c-labeled column. Moreover, the columns
below u and v have to coincide. The latter can be easily formalized using
the predicates ≤1 and ≤2 (recall that, for example, ≤2 stands for proceeding
from left to right), which, in turn, are definable only in terms of ≤. However,
L cannot be EMSOP(Σ)-definable, because, if we suppose L ∈ EMSOP(Σ),
then, according to Theorem 3.24 and Lemma 3.27, there is a graph acceptor
B = (Q, R, S,Occ) over (Σ, {1, 2}) such that R = 1, Occ is logically equivalent
to true, and LP(Σ)(B) = L. In any accepting run of B on a picture GCH, all the
information carried from G to H is already present in the sequence of states
associated to the single column C. For a given column length n, the number
of those state sequences is |Q|n. In contrast, the number of distinct nonempty
sets of words over {a, b} of length n is 22n

− 1 and, therefore, exceeds |Q|n

for sufficiently large n. So we can find an accepting run on G′CH′ for some
G′, H′ ∈ P({a, b}) that induce different sets of column words. �

A special case of a picture is given if Σ is a singleton, which allows us to
omit the labeling function. We then rather speak of a grid. Given n, m ∈ IN≥1,
the (n, m)-grid (with n rows and m columns) is the structure G(n, m) :=
([n] × [m], S1, S2) ∈ DAGH(−, {1, 2}) where, as in the picture case, S1, S2 ⊆
([n] × [m])2 contain the pairs ((i, j), (i + 1, j)) ∈ ([n] × [m])2 and, moreover,
((i, j), (i, j + 1)) ∈ ([n]× [m])2, respectively. By GR, we denote the set of all
grids. The (3,5)-grid is depicted in Fig. 3.8.

A relation R ⊆ IN≥1 × IN≥1 may be represented by the grid language
{G(n, m) | (n, m) ∈ R}. As a unary function f : IN≥1 → IN≥1 can be consid-
ered as a binary relation, we accordingly define the grid language G(f) of f
to be the set {G(n, f(n)) | n ∈ IN≥1}.

Fig. 3.8. The (3,5)-grid

By means of grids, Matz and Thomas showed that quantifier alternation
of second-order variables in MSO logic over graphs forms an infinite hierarchy.

Theorem 3.29 ([66]). The monadic quantifier-alternation hierarchy over
GR is infinite.

34 3 Graphs, Logics, and Graph Acceptors

The next result directly follows from Lemma 3.27.

Corollary 3.30.
1-GA−

GR
= GAGR

Though, with respect to grids, already 1-spheres suffice to give graph ac-
ceptors the full expressive power, grids are the starting point to prove that,
in general, one cannot restrict to 1-spheres (recall Lemma 3.22). This fact
is witnessed by the set Ln of n-supergrids for some n ≥ 4 (cf. [92]). From
a grid, we obtain the corresponding n-supergrid if any edge is replaced by a
sequence of n new edges. Such a sequence is called a superedge. Relative to the
set of graphs over (−, {1, 2}), Ln can be recognized by some graph acceptor
equipped with 2n-spheres. But now suppose there is a graph acceptor B with
radius 1 such that LDG(−,{1,2})(B) = Ln and consider ρ to be an accepting
run of B on some G ∈ Ln. If G is chosen to be large enough, then ρ might
exhibit two occurrences of the same 1-sphere whose nodes do not touch the
end of a superedge and are not related in some way with respect to the par-
tial order induced by G. Moreover, suppose the nodes of G that belong to the
corresponding two sphere centers to be u and v and assume that their (only)
outgoing edges lead to u′ and v′, respectively. From G, we obtain another
graph if we remove the edges (u, u′) and (v, v′) and, instead, add (u, v′) and
(v, u′). The resulting graph, though it is contained in DAG(−, {1, 2}) and in
LDAG(−,{1,2})(B), is no longer a supergrid.

3.7 Bibliographic Notes

Standard logic references are [30, 39]. First-order and monadic second-order
logic over words and graphs and their relation to finite automata are moreover
studied in [94], which also provides some background of the theorem of Hanf.
In this regard, we also recommend [60], a comprehensive textbook on finite
model theory. Graph acceptors, whose logical characterization is based on the
theorem of Hanf, are introduced in [91]. However, the notation of a graph
acceptor that we adopted in this book is provided in [92, 93], which also give
a broad overview of its applications and its relation to (existential) monadic
second-order logic over dags, posets, grids, and pictures.

4

Words and Finite Automata

In this chapter, we recall the notion of finite automata, which we consider to
be a sequential model without any communication. Actions are processed in
a linear manner and therefore arranged as words.

4.1 Words

Words can be represented in many different ways. For example, a word can
be seen as a string, i.e., a sequence of symbols. Such a sequence gives rise to
a totally ordered set, a special case of a partially ordered one, which, as we
have seen, has a graph-theoretical counterpart. In the following, let Σ be an
alphabet.

Definition 4.1 (Word). A word over Σ is a structure w = ({1, . . . , n}, �, λ),
n ∈ IN, where 1, . . . , n are the letter positions of w, � is the successor relation
on {1, . . . , n}, which contains the pairs (i, i + 1) with i ∈ {1, . . . , n− 1}, and
λ is a mapping {1, . . . , n} → Σ.

The set of words over Σ is denoted by W(Σ) or simply by W if Σ is
clear from the context. Note that a word over Σ is just a graph over Σ and
a singleton, which is, to some extent, extraneous. Actually, W(Σ) is simply
DAGH(Σ,−) restricted to graphs (V, �, λ) such that �∗ forms a total order.
Recall that we do not distinguish isomorphic structures. We can therefore
identify a word ({1, . . . , n}, �, λ) ∈W with the sequence a1 . . . an ∈ Σ∗ where
ai = λ(i) for each i ∈ {1, . . . , n}. For example, ({1, 2, 3}, {(1, 2), (2, 3)}, {1 �→
a, 2 �→ b, 3 �→ a}) ∈W({a, b}) is equated with the string aba ∈ {a, b}∗. Recall
that the empty word, which corresponds to the structure (∅, ∅, ∅), is denoted
by ε. It appears as the unit word in the free monoid W. Recognizability and
rationality coincide in finitely generated free monoids, which is, as commonly
known, Kleene’s theorem.

Given a word w = ({1, . . . , n}, �, λ) ∈W with n ≥ 1, we denote by first(w)
and last(w) the events 1 and n, respectively.

36 4 Words and Finite Automata

Theorem 4.2 (Kleene [53]).

RECW = RAT W

Exercise 4.3. Let Σ = {a, b}. Provide rational expressions α1, α2, α3 of
W(Σ) such that the following hold:

L(α1) = {w ∈W(Σ) | w does not end with ab},
L(α2) = {w ∈W(Σ) | ab occurs in w exactly once},
L(α3) = L(α1) ∪ L(α2).

Note that a recognizable word language is also called regular. As W(Σ) ⊆
DG(Σ,−), the monadic second-order formulas that can be applied to words
over Σ are those from MSO(Σ,−). Recall that the corresponding atomic
entities are

• λ(x) = a,
• x � y,
• x ∈ X, and
• x = y.

The definition of their semantics arises from the general case of graphs (cf.
Chap. 3).

Exercise 4.4. Describe each of the following word languages over Σ = {a, b}
by an MSO(Σ,−)-sentence relative to W(Σ):

(a) {awa | w ∈W(Σ)},
(b) {w ∈W(Σ) | |w|b > 3},
(c) {w ∈W(Σ) | |w| is even}.

4.2 Finite Automata

We now recall a well-known automata model, which is tailored to words.

Definition 4.5 (Finite Automaton). A finite automaton over Σ is a struc-
ture (S, ∆, sin , F) where

• S is its nonempty finite set of states,
• ∆ ⊆ S ×Σ × S is the set of transitions,
• sin ∈ S is the initial state, and
• F ⊆ S is the set of final states.

Let A = (S, ∆, sin , F) be a finite automaton over Σ. A run of A on a
word w = ({1, . . . , n}, �, λ) ∈ W(Σ) is a mapping ρ : {0, 1, . . . , n} → S such
that ρ(0) = sin and, for any i ∈ {1, . . . , n}, (ρ(i − 1), λ(i), ρ(i)) ∈ ∆. We
call ρ accepting if ρ(n) ∈ F . The language of A, denoted by L(A), is the set
{w ∈ W | there is an accepting run of A on w}. Note that ε is contained in

4.2 Finite Automata 37

L(A) if (and only if) sin ∈ F . We call A deterministic if, for any s, s1, s2 ∈ S
and a ∈ Σ, {(s, a, s1), (s, a, s2)} ⊆ ∆, implies s1 = s2. In that case, A provides
for any word w ∈W(Σ) at most one run on w. Note that, often, one requires
a deterministic automaton to provide exactly one run on any word, which,
however, can be easily achieved by adding a sink state, i.e., a nonaccepting
state that goes to itself on every action from Σ.

By FA(Σ) (det-FA(Σ)), we denote the class of word languages that are
recognized by some (deterministic, respectively) finite automaton over Σ. If
Σ is clear from the context, we usually write FA and det-FA.

s0 s1 s2
a

a, b

a, b

Fig. 4.1. A finite automaton

Example 4.6. The finite automaton A = ({s0, s1, s2}, ∆, s0, {s2}) over {a, b}
with ∆ = {(s0, a, s1), (s1, a, s2), (s1, b, s2), (s2, a, s1), (s2, b, s1)} is depicted in
Fig. 4.1. In particular, the initial state and the only final state are marked
by an ingoing arrow without source state and by a second circle, respectively.
Observe that A is deterministic and that its language is L((aa + ab) · (aa +
ab + ba + bb)∗), i.e., the set of words that start with an a and are of even
length.

Theorem 4.7.
FA = det-FA

The construction of a deterministic finite automaton from a nondeterministic
one is based on the well-known power-set construction. Its basic idea is to
simulate several runs deterministically by collecting all the possible states in
which the nondeterministic model might be (of course, there are finitely many
of them). For details, we refer to [48].

Exercise 4.8. Suppose Σ = {a, b}. Determine directly (i.e., without going
over nondeterministic automata) deterministic finite automata A1, . . . ,A4

over Σ such that the following hold:

L(A1) = {w ∈W(Σ) | w �∈ {ab, ba}∗},
L(A2) = {w ∈W(Σ) | w �∈ {ab}∗ and w �∈ {ba}∗},
L(A3) = L(A1) ∩ L(A2),
L(A4) = L(A1) ∪ L(ab∗a).

A finite automaton gives rise to a W-automaton and vice versa (see Exer-
cise 4.16 below).

38 4 Words and Finite Automata

Theorem 4.9.
FA = RECW

Moreover, finite automata can be characterized in terms of MSO, which is the
famous theorem of Büchi and Elgot.

Theorem 4.10 (Büchi, Elgot [20, 32]).

FA = MSOW

Proof. “⊆”: Suppose A = (S, ∆, sin , F) to be a finite automaton over Σ,
say, with state set S = {s0, . . . , sk} where sin = s0. Then, for any word
w = ({1, . . . , n}, �, λ) ∈W(Σ) with w �= ε, we have w ∈ L(A) iff

w |= ∃X0 . . .∃Xk[
partition(X0, . . . , Xk)

∧ ∀x(last(x)→
∨

si∈F x ∈ Xi)

∧ ∀x∀y
(
x � y →

∨
(si,a,sj)∈∆ (x ∈ Xi ∧ λ(y) = a ∧ y ∈ Xj)

)
∧ ∀x

(
first(x)→

∨
(s0,a,si)∈∆ (λ(x) = a ∧ x ∈ Xi)

)]
Here, the predicates first(x) and last(x) are used to abbreviate ¬∃y(y � x)
and ¬∃y(x � y), i.e., to access the first and the last position of a word,
respectively. Note that, if the empty word is not recognized by A, one has to
add a clause ∃xfirst(x), as, otherwise, ε will be included in the language of
the above formula.

“⊇”: So let us construct from an arbitrary MSO(Σ,−)-sentence ψ a finite
automaton A over Σ such that L(A) = LW(Σ)(ψ). According to Lemma 3.3,
it is sufficient to give an inductive translation of an MSO0(Σ,−)-formula of
the form

ϕ(Y1, . . . , Yn) = (∃/¬∃)Xk . . . (∃/¬∃)X1ϕ
′(Y1, . . . , Yn, Xk, . . . , X1)

with quantifier-free ϕ′, which (if n ≥ 1) defines a word language over
Σ × {0, 1}n in the obvious manner, into a corresponding finite automaton
A over Σ × {0, 1}n. For atomic formulas, the translation is straightforward.
For example, the finite automaton of a subformula Xi ⊆ Xj just has to
check if, in each letter to read, the component that belongs to Xi is 0 or
the component of Xj is 1. In the induction step, we can restrict to nega-
tion, disjunction, and existential quantification. While the first two refer
to the automata-theoretic constructions of complementation and union, re-
spectively, the latter results in a projection of the automaton at hand. So
suppose A′ to be the finite automaton for ϕ′′(Y1, . . . , Yn, Xk, . . . , Xi+1) =
(∃/¬∃)Xi . . . (∃/¬∃)X1ϕ

′(Y1, . . . , Yn, Xk, . . . , X1) with 0 ≤ i < k. If we pre-
cede ϕ′′ with ∃Xi+1, then the desired automaton over Σ × {0, 1}n+k−(i+1)

basically simulates A′ but guesses (rather than reads) the component of Xi+1

in a letter. In other words, each letter is projected onto the remaining com-
ponents. �

4.2 Finite Automata 39

The proof of Theorem 4.10 allows us to effectively construct from any
given MSO-sentence an equivalent EMSO-sentence.

Corollary 4.11.

EMSOW = MSOW = MSO[≤]W = EMSO[≤]W

Remark 4.12. Unfortunately, transforming an MSO formula into an equiva-
lent finite automaton has nonelementary complexity. More precisely, there is
no translation of MSO formulas ϕ into finite automata A such that the num-
ber of states of A is bounded by an elementary function, i.e., by an iterated
exponential of the form

22·
··2
|ϕ|

In general, first-order logic is not as expressive as monadic second-order
logic. Moreover, the set of FOW-definable word languages is strictly contained
in the class of FO[≤]W-definable languages.

Proposition 4.13.

FOW � FO[≤]W � EMSOW = MSOW

Proof. While the first strict inclusion is witnessed by the language of the
rational expression a∗ba∗ca∗, which is FO[≤]W- but not FOW-definable, the
set of words of even length turns out to be EMSOW- but not FO[≤]W-definable.
See [92, 94] for further details. �

Exercise 4.14. Show that L(a∗ba∗ca∗) �∈ FOW({a,b,c}).

An important concept of dags (and posets) is their characterization in
terms of linear extensions or linearizations, which establish a relationship be-
tween dags and words. So let G = (V, {��}�∈C , λ) be a graph from DAG(Σ, C).
A word (V ′, �′, λ′) ∈W(Σ) is called a linearization of G if V ′ = V , �′ is the
covering relation of some total order containing �∗, and λ′ = λ. The set of
linearizations of G is denoted by Lin(G). This notion is extended to sets L
of graphs according to Lin(L) :=

⋃
G∈L Lin(G). For example, abaa and aaba

are the only linearizations of the graph depicted in part (a) of Fig. 3.5 on
page 31. In turn, one cannot uniquely infer a graph from a given lineariza-
tion in general, because a linear extension abstracts away some edges and
edge labelings. However, in most relevant cases (among them Mazurkiewicz
traces and message sequence charts), it is possible to reconstruct a graph
from a given linearization, as, for those classes of graphs, the edge relation is
uniquely determined by the rest of the structure.

Let us conclude this section with a comparison of the automata models
for words we have seen so far.

40 4 Words and Finite Automata

Corollary 4.15.
1-GAW = GAW = FA

Proof. The second equality directly follows from Theorem 3.24, Theorem 4.10,
and Corollary 4.11. The proof of the first equality is left to the reader as an
exercise (cf. Exercise 4.16). For this, one has to verify that the transitions
of a finite automaton can be simulated using 1-spheres. In particular, ini-
tial/final transitions are mimicked by 1-spheres whose sphere center has no
predecessor/successor, respectively. �

Exercise 4.16. Give direct transformations for the following directions:

(a) from finite automata to W-automata,
(b) from W-automata to finite automata,
(c) from graph acceptors with 1-spheres to finite automata,
(d) from finite automata to graph acceptors with 1-spheres.

Taking into consideration that, over words, a graph acceptor can count the
number of employed spheres up to a certain threshold just by means of control
states, we get that graph acceptors can do without occurrence constraints.
In general, however, this applies at most to classes of connected graphs (cf.
Lemma 3.23).

Lemma 4.17 ([92]).
GA−

W
= GAW

4.3 Summary

Some closure and expressiveness properties of finite automata are summarized
in Table 4.1. In fact, the class FA is closed under union, intersection, and
complementation. Moreover, the deterministic model of a finite automaton
already achieves the expressiveness of its general model. Finite automata are
expressively equivalent to EMSO logic, which, in turn, has the same power as
full MSO logic. Finally, it is obviously decidable if a given finite automaton
recognizes the empty language.

Table 4.1. Closure and expressiveness properties of finite automata

∪ ∩ · det EMSO MSO Empt.

� � � = = = �

4.4 Bibliographic Notes 41

4.4 Bibliographic Notes

For a general and accessible introduction to formal languages and finite au-
tomata, see [48]. Therein, the reader may find basic transformations of finite
automata such as complementation and determinization. The equivalence be-
tween finite automata and monadic second-order logic over words is sum-
marized, for example, in [60] and [94]. First-order and monadic second-order
logics as well as graph acceptors over words are considered in [92] and [94].

5

Dags and Asynchronous Cellular Automata

In this chapter, we present asynchronous cellular automata (with types) as
a general model of a distributed system. It subsumes the models of finite
automata, asynchronous automata, and communicating finite-state machines,
as introduced in Chaps. 4, 6, and 8, respectively. Nevertheless, it allows a
characterization in terms of EMSO logic. The underlying domain comprises
dags over a distributed alphabet, which describes the dependencies of actions
provided by the system.

5.1 (Σ̃, C)-Dags

In this section, we study classes of structures that might be appropriate to
describe and model the behavior of a distributed system. We hereby come from
quite general structures, which, depending on the kind of system at hand, are
refined towards more specific ones.

Our starting point will be the class DAG of directed acyclic graphs, which
generate partial orders in a natural manner. Recall that the nodes of a graph
can then be seen as events, which are executed in the order imposed by the
edge relation. They are partially ordered rather than queued in a total or-
der to abstract from a concrete ordering of intrinsically independent events.
However, arbitrary partial orders or, rather, their associated graphs, might
be too general to model behaviors with special characteristics. For example,
if we deal with finite automata as a model of a system, it suffices to consider
only those graphs that represent totally ordered sets or words (cf. Chap. 4).
Moreover, if the system at hand is designed for sending messages between
finitely many processes each of which is sequential, only those graphs come
into question whose edges reflect either a message exchange or neighboring
events executed by one and the same sequential process. As the distributed
behavior of a concurrent system gives rise to events that cannot be ordered,
we shall furthermore exclude graphs provoking such an unnatural ordering
of events. While the former model, a message-passing system, will lead us to

44 5 Dags and Asynchronous Cellular Automata

message sequence charts, the latter refers to Mazurkiewicz traces. As we will
see, message sequence charts and Mazurkiewicz traces are incomparable in
general, but, in some special cases, can be embedded into each other.

We fix a nonempty finite set Ag of at least two agents, a distributed alphabet
Σ̃, which is a tuple (Σi)i∈Ag of (not necessarily disjoint) alphabets Σi, and
an alphabet C. In the following, let Σ stand for

⋃
i∈Ag Σi, the set of actions.

Elements from Σi are understood to be actions that are performed by agent
i. So let, for a ∈ Σ, loc(a) := {i ∈ Ag | a ∈ Σi} denote the set of agents
that are involved in a. Having this in mind, we say that actions a and b are
independent and write a I eΣ b if there is no common agent that controls both
of them, i.e., if loc(a) ∩ loc(b) = ∅. Otherwise, we say a and b are dependent,
writing a D eΣ b. Observe that D eΣ is a reflexive and symmetric binary relation
on Σ. Such a relation is called a dependence relation over Σ. Moreover, we
call the pair (Σ, D eΣ) a dependence alphabet.

Agents may communicate with one another. They may do this by executing
common actions simultaneously or via message exchange through channels. So
let us denote by Ch(Ag) (or just Ch) the set {(i, j) ∈ Ag × Ag | i �= j} of
channels. Thus, we assume that a “real” message exchange takes place between
distinct processes only.

We now introduce the models representing the behavior of a system of
communicating agents. In doing so, we combine the standard models of [29]
and [55].

Definition 5.1 (Lo-Dag). A lo-dag over the pair (Σ̃, C) is a structure
(V, {��}�∈C , λ) ∈ DAG(Σ, C) such that, for any i ∈ Ag, λ−1(Σi) is totally
ordered by ≤.

Thus, the only restriction imposed by a lo-dag compared with a dag is the
totally ordered behavior of a single process, which is thus assumed to be
sequential. If, in addition, we restrict the communication between agents in
the way that messages (edges) of equal type cannot cross, we obtain the class

of (Σ̃, C)-dags, which will be the main model considered in this chapter.

Definition 5.2 ((Σ̃, C)-Dag). A (Σ̃, C)-dag is a lo-dag (V, {��}�∈C , λ) over

(Σ̃, C) such that, for any � ∈ C and any (u, v), (u′, v′) ∈ �� with λ(u) = λ(u′)
and λ(v) = λ(v′), we have u ≤ u′ iff v ≤ v′.

We conclude that, in a (Σ̃, C)-dag (V, {��}�∈C , λ), for any u ∈ V , � ∈ C, and
a ∈ Σ, there is at most one vertex v ∈ V such that both u �� v (v �� u) and
λ(v) = a. If we require that any two messages between two agents must not

cross, we deal with the class of fifo-dags over (Σ̃, C).

Definition 5.3 (Fifo-Dag). A fifo-dag over the pair (Σ̃, C) is a lo-dag

(V, {��}�∈C , λ) over (Σ̃, C) such that, for any (u, v), (u′, v′) ∈ � with λ(u) D eΣ
λ(u′) and λ(v) D eΣ λ(v′), we have u ≤ u′ iff v ≤ v′.

5.1 (eΣ, C)-Dags 45

Thus, fifo-dags correspond to a fifo architecture where messages (u, v) and
(u′, v′) between agents i and j are received by j in terms of v and v′ in the
order they have been sent by i in terms of u and u′, respectively. The sets
of lo-dags over (Σ̃, C), (Σ̃, C)-dags, and fifo-dags over (Σ̃, C) will be denoted

by DAGlo(Σ̃, C), DAG(Σ̃, C), and DAG⇒(Σ̃, C), respectively. Recall that,
in contrast, DAG(Σ, C) was used to denote the set of dags over (Σ, C) in
general.

As usual, if C is a singleton and therefore negligible, we may write, for
example, DAG(Σ̃,−) or just DAG(Σ̃) instead of DAG(Σ̃, C), and we may

speak of Σ̃-dags or fifo-dags over Σ̃.

Remark 5.4. DAG⇒(Σ̃, C) ⊆ DAG(Σ̃, C) ⊆ DAGlo(Σ̃, C) ⊆ DAG(Σ, C)

2

2

1

1

1

a

a

b

b

b

(a)

2

2

1

1

1

a

a

b

b

b

(b)

2

2

1

2

1

a

a

b

b

b

(c)

1

1

2

2

1

1

a

a

a

b

b

b

(d)

Fig. 5.1. Some dags over ({a, b}, {1, 2})

Example 5.5. Suppose Σ̃ = ({a}, {b}) and C = {1, 2}. Figure 5.1a depicts a

dag over (Σ, C) that is not a lo-dag over (Σ̃, C), because the a-labeled nodes

are not ordered with respect to ≤. Figure 5.1b illustrates a lo-dag over (Σ̃, C)

that is not a (Σ̃, C)-dag, whereas the dag from Fig. 5.1c is a (Σ̃, C)-dag that,

however, is not a fifo-dag. Finally, Fig. 5.1d depicts a fifo-dag over (Σ̃, C).

Example 5.6. Two fifo-dags over ({a}, {b, c}, {c, d}) (thus, without edge la-
belings) are depicted in Fig. 5.2. Observe that the right-hand figure shows the
1-sphere of the other dag around the d-labeled node.

46 5 Dags and Asynchronous Cellular Automata

a

b d

a

c

(a)

a

d

a

c

(b)

Fig. 5.2. A fifo-dag over ({a}, {b, c}, {c, d}) and a 1-sphere

a

a

a

c

c

c

(a)

a

a

a

b

c

b

(b)

a

a

a

b

b

b

(c)

a

a

a

c

c

c

(d)

Fig. 5.3. Some lo-dags over (({a, b}, {b, c}),−)

Example 5.7. Consider Fig. 5.3. If we suppose Σ̃ to be ({a, b}, {b, c}), parts

(a) and (b) both depict a fifo-dag over Σ̃. Part (c) illustrates a Σ̃-dag that is

not a fifo-dag. Finally, the remaining dag, from Fig. 5.3d, is a lo-dag over Σ̃
but not a Σ̃-dag.

Remark 5.8. Any class K ⊆ DAG(Σ̃, C) has bounded degree.

Exercise 5.9. Depending on Σ̃ and C, determine the lowest natural number
B such that the degree of DAG(Σ̃, C) is bounded by B. Is DAGlo(Σ̃, C)
bounded, too?

5.1 (eΣ, C)-Dags 47

Given (V, {��}�∈C , λ) ∈ DAGlo(Σ̃, C), let us introduce the following ab-
breviations: For i ∈ Ag , Vi shall denote the set of nodes u ∈ V such that
λ(u) ∈ Σi. Accordingly, given a ∈ Σ, Va is the set of nodes u ∈ V such that
λ(u) = a. Let u, v ∈ V . We write u �c v if both λ(u) I eΣ λ(v) and u � v (thus,
u and v communicate by means of a channel as they have no agent in common
that could have synchronized them). If, in addition, u and v make use of some
channel (i, j) ∈ Ch, i.e., if u �c v, u ∈ Vi, and v ∈ Vj , then we write u �(i,j) v.
Note that, even if we deal with a fifo-dag, we may have u �ch v and u �ch′ v
at the same time for distinct channels ch, ch ′ ∈ Ch. Otherwise, sequential
progress of an agent i ∈ Ag is reflected by relations �i := � ∩ (Vi × Vi) and
≤i := ≤ ∩ (Vi × Vi), which is a total order. Moreover, <i is defined in the
obvious manner. We observe that the statement u �i v may hold just as well
as u �j v for distinct agents i and j. Note that it will always be clear if the
index of the symbol � is meant to be a channel, an agent, or a symbol from
C. For u ∈ V and i ∈ Ag , we say that u is Σi-maximal if u ∈ Vi and there is
no v ∈ Vi such that u < v. There is at most one Σi-maximal vertex.

In the following, we will focus on (Σ̃, C)-dags rather than lo- and fifo-dags.

Similarly to the general case, we write DAGH(Σ̃, C) to denote DAG(Σ̃, C) ∩

DAGH(Σ, C). Let (V, {��}�∈C , λ) be a (Σ̃, C)-dag and let u ∈ V . We denote
by Read(u) := {(a, �) ∈ Σ × C | there is some v ∈ V such that v �� u and
λ(v) = a} the read domain of u and, given (a, �) ∈ Read(u), let (a, �)-pred(u)
be the unique vertex v such that both v �� u and λ(v) = a. Accordingly,
let Write(u) := {(a, �) ∈ Σ × C | there is some v ∈ V such that u �� v and
λ(v) = a} be the write domain of u and, for (a, �) ∈ Write(u), (a, �)-succ(u)
denote the unique vertex v such that both u �� v and λ(v) = a. If C is
a singleton, Write(u) and Read(u) might be considered to be subsets of Σ,
which allows us to write simply a-pred(u) and a-succ(u), respectively.

A fundamental notion concerning (Σ̃, C)-dags is that of projections onto
agents, which describes the totally ordered action sequence of one single agent.
Such an action sequence gives rise to a word. For D = (V, {��}�∈C , λ) ∈

DAG(Σ̃, C) and i ∈ Ag , we denote by D� i the projection (V ′, �′, λ′) ∈W(Σi)
of D onto i where

• V ′ = Vi,
• �′ is the covering relation of ≤i, and
• λ′ = λ|V ′ (i.e., λ′ is the restriction of λ to V ′).

For example, the words aa, bc, and dc are the projections D�1, D�2, and D�3
of the ({a}, {b, c}, {c, d})-dag D from Fig. 5.2a onto 1, 2, and 3, respectively.

Example 5.10 (Mazurkiewicz Traces (1)). An M+-trace over Σ̃ is a

structure (V, {��}�∈2Ag , λ) ∈ DAG(Σ̃, 2Ag) such that

• � =
⋃

i∈Ag �i, and

• for any (u, v) ∈ � and � ∈ 2Ag , u �� v iff � = {i ∈ Ag | u �i v}.

48 5 Dags and Asynchronous Cellular Automata

Recall that, hereby, �i is the covering relation of the total order ≤i. Thus,
the labeling of an edge between nodes u and v (which can be assumed to be
nonempty) tells us which agents execute u and v consecutively. The set of M+-

traces over Σ̃ is denoted by TR+(Σ̃). Figure 5.4a depicts an M+-trace over
({a, b, d}, {a, b, e}, {a, b}) (say, with Ag = {1, 2, 3}). The dag from Fig. 5.4b is
clearly not an M+-trace. Apart from the edge labelings, it lacks the mandatory
edge between the a and the b-labeled node. However, the latter dag is just a
different view of the former. Its edge relation allows us to access the history
of a node only with respect to � (cf. Example 5.11).

Example 5.11 (Mazurkiewicz Traces (2)). An M−-trace over Σ̃ is a

structure (V, �, λ) ∈ DAGH(Σ̃,−) such that, for any u, v ∈ V , u � v im-

plies λ(u) D eΣ λ(v). Note that, as we consider a subclass of DAGH(Σ̃,−),

� and � coincide. The set of M−-traces over Σ̃ is denoted by TR−(Σ̃).
Figure 5.4b depicts an M−-trace over ({a, b, d}, {a, b, e}, {a, b}), whereas the
dag from Fig. 5.4a (neglecting the edge labelings) is not an M−-trace over
({a, b, d}, {a, b, e}, {a, b}). In particular, it is not a Hasse diagram.

{1}

{2}

{2}

{1, 3}
{2}

d

a

e

e

b

(a)

d

a

e

e

b

(b)

Fig. 5.4. An M+-trace and an M−-trace over ({a, b, d}, {a, b, e}, {a, b})

Example 5.12 (Message Sequence Charts). Messages may be exchanged
between the agents by performing send and receive actions. So set, for an
agent i ∈ Ag , Γi to be {i!j | j ∈ Ag \ {i}} ∪ {i?j | j ∈ Ag \ {i}}, the set of
(communication) actions of agent i. The action i!j is to be read as “i sends a
message to j”, while j?i is the complementary action of receiving a message
sent from i to j. Let Γ stand for the union of the (disjoint) Γi and set Γ̃ to
be the distributed alphabet (Γi)i∈Ag . A message sequence chart (MSC) over

Ag is a Γ̃ -dag (V, �, λ) (which is thus contained in DAG(Γ̃ ,−)) such that

1. for any i ∈ Ag , �i is the cover relation of ≤i,
2. for any (u, v) ∈ �c, λ(u) is a send action and λ(v) is its complementary

receive, and
3. for any u ∈ V , there is v ∈ V satisfying either u �c v or v �c u.

5.1 (eΣ, C)-Dags 49

1!2

1?2

1!2

2!1

2?1

2?1

(a)

1!2

1!2

1!2

2?1

2?1

(b)

Fig. 5.5. An MSC and an LMSC over {1, 2}, which are both fifo-dags over
({1!2, 1?2}, {2!1, 2?1})

We denote by MSC(Ag) the set of MSCs over Ag . Note that, by the defini-

tion of a Γ̃ -dag, an MSC behaves in a fifo manner, neglecting overtaking of
messages of equal type. If we do not require a send vertex to be equipped
with a corresponding receive, we obtain the class of (potentially) lossy MSCs
(LMSCs) over Ag , which is a superset of MSC(Ag) and shall be denoted by

LMSC(Ag). In particular, we obtain MSC(Ag) ⊆ LMSC(Ag) ⊆ DAG⇒(Γ̃).
Figure 5.5 illustrates an MSC over {1, 2} and, respectively, an LMSC over
{1, 2}, which is not an MSC. Note that MSC(Ag) might be defined relative
to LMSC(Ag) by the FO(Γ)-sentence

∀x
∧

(i,j)∈Ch(Ag)

(λ(x) = i!j → ∃y(x � y ∧ λ(y) = j?i))

To ease the handling of MSO(Σ, C)-formulas in the framework of (Σ̃, C)-
dags, we will henceforth use x �i y, for i ∈ Ag , to denote the formula x �

y ∧ λ(x) ∈ Σi ∧ λ(y) ∈ Σi and we will use x �c y instead of x � y ∧∨
(a,b)∈I eΣ

λ(x) = a ∧ λ(y) = b. To find suitable definitions of ≤i and �(i,j),

which shall correspond to the relations ≤i and, respectively, �(i,j) as specified
above, is left to the reader as an exercise.

Traces and MSCs have a nice property in common: any structure can be
uniquely determined solely by the knowledge of its projections: given words
wi ∈W(Σi) for any i ∈ Ag , there is at most one trace T ∈ TR+(Σ̃) such that,

for any i ∈ Ag , T � i = wi. In general, we will call a class K ⊆ DAG(Σ̃, C)
projective if, for any collection (wi)i∈Ag of words wi ∈W(Σi), there is at most

one (Σ̃, C)-dag D ∈ K such that, for any i ∈ Ag , D� i = wi.

Observe that DAG(Σ̃, C) and LMSC(Ag) are not projective, whereas

TR+(Σ̃), TR−(Σ̃), and MSC(Ag) are. The notion of a projective class of

(Σ̃, C)-dags allows us to introduce product languages, which shuffle local pro-
jections in terms of word languages to obtain languages of dags. Those lan-
guages can usually be realized by simple and natural automata models (cf.
Chaps. 6, 7, and 8).

50 5 Dags and Asynchronous Cellular Automata

5.2 The Operational Behavior of (Σ̃, C)-Dags

A relation =⇒(eΣ,C) ⊆ DAG(Σ̃, C) × DAG(Σ̃, C) will reflect the operational

behavior of (Σ̃, C)-dags. As usual, we hereby write D =⇒(eΣ,C) D′ instead

of (D, D′) ∈ =⇒(eΣ,C). Intuitively, D and D′ are configurations of a system,

and executing an action in configuration D may lead to configuration D′.
Given (Σ̃, C)-dags D = (V, {��}�∈C , λ) and D′ = (V ′, {�′

�}�∈C , λ′), we have
D =⇒(eΣ,C) D′ if V ′ = V ·∪ {u}, λ′

|V = λ, and, for any � ∈ C, �′
� = �� ·∪

�′′
� for some �′′

� ⊆ V × {u}. This definition is canonically extended towards

=⇒(eΣ,C),Q ⊆ 〈DAG(Σ̃, C), Q〉 × 〈DAG(Σ̃, C), Q〉 for some alphabet Q.

Example 5.13. Suppose Σ̃ = ({a}, {b}), C = {1, 2}, Q = {q1, q2}, and

Db, Dc, Dd ∈ 〈DAG(Σ̃, C), Q〉 are given by Fig. 5.6b–d, respectively. Then,
we have both Db =⇒(eΣ,C),Q Dc and Db =⇒(eΣ,C),Q Dd.

In the following, the elements of Q play the role of states. Thus, a con-
figuration is supplemented by some additional information to make system
behavior more flexible, in particular in terms of automata. The idea of au-
tomata running on (Σ̃, C)-dags is to confine the behavior of =⇒(eΣ,C) by means

of transitions, i.e., moving from one configuration into another depends on the
existence of a corresponding transition rule. Formally, the set of transitions
over (Σ̃, C) and Q is given by Trans(eΣ,C)(Q) := (Q ·∪ {−})Σ×C × Σ × Q.

A triple (q, a, q) ∈ Trans(eΣ,C)(Q) might be read as follows: the system can

execute an a and change into some local state q, if, for any (b, �) ∈ Σ × C
with q[(b, �)] �= −, an action b, controlled by an �-labeled edge, has led to
state q[(b, �)]. Given a system execution in terms of a Q-extended dag over

(Σ̃, C), we can identify the transitions invoked by the system. So suppose we

have D = (V, {��}�∈C , (λ, ρ)) ∈ 〈DAG(Σ̃, C), Q〉. We define transD : V →
Trans(eΣ,C)(Q) and, for any u ∈ V , set transD(u) (the transition taken by the

system when executing u) to be (q, λ(u), ρ(u)) where, for any (b, �) ∈ Σ × C,

q[(b, �)] =

{
− if (b, �) �∈ Read(u)
ρ((b, �)-pred(u)) if (b, �) ∈ Read(u)

In other words, the execution of u depends on its direct predecessor nodes.
This view will be taken and be made more precise in the next section when we
consider automata on (Σ̃, C)-dags. A transition t = (q, a, q) ∈ Trans(eΣ,C)(Q)

might be considered to be the Q-extended dag D(t) := (V ·∪ {q}, {��}�∈C , λ)
over (Σ, C) with

• V = {(b, �) ∈ Σ × C | q[(b, �)] ∈ Q},
• �� = {(b, �′) ∈ V | �′ = �} × {q} for any � ∈ C,
• λ((b, �)) = (b, q[(b, �)]) for any (b, �) ∈ V , and
• λ(q) = (a, q).

5.2 The Operational Behavior of (eΣ, C)-Dags 51

Moreover, q ∈ (Q ·∪ {−})Σ×C may be considered to be a subset of (Σ×Q)×C
with the understanding that, for any (a, �) ∈ Σ × C and q ∈ Q, ((a, q), �) ∈ q
iff q[(a, �)] = q. In the following, we therefore often write a transition (q, a, q)
as q −→ (a, q) with q being a subset of (Σ × Q) × C. Note that, if C is a

singleton, we may consider a transition over (Σ̃, C) and Q to be an element
of (Q ·∪ {−})Σ ×Σ ×Q

Let ∆ ⊆ Trans(eΣ,C)(Q). To indicate that a transition has been ap-

plied in accordance with the rules specified by ∆, we write, given D, D′ ∈
〈DAG(Σ̃, C), Q〉 and assuming that (Σ̃, C) will be clear from the context,
D =⇒∆ D′ if both D =⇒(eΣ,C),Q D′ and transD′(u) ∈ ∆ where u is the

unique vertex of D′ that does not occur in D.

Example 5.14. Suppose Σ̃ = ({a}, {b}), C = {1, 2}, and Q = {q1, q2}.
The graph D(t) of the transition t = {((a, q1), 1), ((b, q2), 2)} −→ (b, q2) ∈
Trans(eΣ,C)(Q) is depicted in Fig. 5.6a. In view of Fig. 5.6b–d, Db =⇒{t} Dc

and Db =⇒{t} Dd.

q1

q2

q2

2

1
a

b

b

(a)

q1

q1

q1

q2

1

1

1
a

a

a

b

(b)

q1

q1

q1

q2

q2

1

1

2

1

1

a

a

a

b

b

(c)

q1

q1

q1

q2

q2

1

1

2

1

1

a

a

a

b

b

(d)

Fig. 5.6. The transitions of a system with eΣ = ({a}, {b}), C = {1, 2}, and Q =
{q1, q2}

If we suppose a system execution to be completed, we might wish to iden-
tify the current state of any agent to determine if the execution is being
accepted or not. If, however, an agent has not taken part in the system exe-
cution, then it might be in some initial state.

52 5 Dags and Asynchronous Cellular Automata

So suppose the finite set O ⊇ Q contains all the states from Q and all
the possible initial states.1 Suppose we are given D = (V, {��}�∈C , (λ, ρ)) ∈

〈DAG(Σ̃, C), Q〉 and suppose furthermore q ∈ OAg is the global initial state of

the system. We accordingly define finalq
D
∈ OAg and set finalq

D
[i] to be q[i] for

any agent i ∈ Ag with Vi = ∅. For any other agent i, we let finalq
D

[i] = ρ(u)

where u is Σi-maximal in V . Thus, any agent contributes to finalq
D

the state
of the vertex it has executed last (or q[i], the initial state of agent i, if there
is no such maximal vertex). In other words, if the system starts in the global

state q and executes D, then it ends up in state finalq
D

. Considering Fig. 5.6,

then finalq
Db

= finalq
Dc

= finalq
Dd

= (q1, q2), no matter what the value of q is.
Some machines take their decision locally, i.e., an agent executes an event

u depending on its current local state rather than on the collection of states
assigned to u’s direct predecessors. So again let D = (V, {��}�∈C , (λ, ρ)) ∈

〈DAG(Σ̃, C), Q〉 and suppose q ∈ OAg and ∗ �∈ O. Applied to some agent

i ∈ Ag , the tuple sourceq
D

(u) ∈ (O ·∪ {∗})Ag with u ∈ V yields the current
state of i before executing u. Provided u ∈ Vi and u is not the first event
executed by i, we deal with the state assigned to the event that i has executed
right before u. In case that u is the first event executed by i, however, we deal
with the initial state q[i]. If, otherwise, u �∈ Vi, then sourceq

D
(u)[i] is set to be

∗, which is a kind of “don’t care” or “don’t know” statement reflecting that
agent j with u ∈ Vj might not be aware of how far agent i has proceeded.

More precisely, for i ∈ Ag , sourceq
D

(u)[i] is given as follows:

sourceq
D

(u)[i] =

⎧⎨⎩ q[i] if u ∈ Vi and u = first(D� i)
ρ(last((D� i)↓u)) if u ∈ Vi and u �= first(D� i)
∗ if u �∈ Vi

5.3 Asynchronous Cellular Automata with Types

We now propose asynchronous cellular automata with types (ACATs) running

on (Σ̃, C)-dags, which combine the models of asynchronous cellular automata
and graph acceptors and allow a uniform embedding of many existing models
of concurrency. In particular, an ACAT has (limited) access to the future to
articulate communication requests. A communication request is reflected by
a type function, which associates with any action a and any state q the set of
actions that henceforth “communicate” with a, provided a has been executed
in state q. Regarding LMSCs, for example, we might require an event labeled
with a send action 1!2 to be followed by the suitable receive event, which is
then labeled with 2?1. ACATs turn out to have the same expressive power as
EMSO logic relative to any class of (Σ̃, C)-dags.

1 In our model of an asynchronous cellular automaton, initial states are actually
not part of the set of states, which makes their notation slightly easier. For the
moment, however, the reader may assume O = Q as well.

5.3 Asynchronous Cellular Automata with Types 53

Definition 5.15 (Asynchronous Cellular Automaton with Types).

An asynchronous cellular automaton with types (ACAT) over (Σ̃, C) is a
structure (Q, ∆, T, F) where

• Q is the nonempty finite set of states,
• ∆ ⊆ Trans(eΣ,C)(Q) is the set of transitions,

• T : (Σ ×Q)→ 2Σ×C is the type function, and
• F ⊆ (Q ·∪ {ı})Ag is the set of final states.

So let A = (Q, ∆, T, F) be an ACAT over (Σ̃, C) and, moreover, suppose

D = (V, {��}�∈C , λ) to be a (Σ̃, C)-dag. A run ofA on D is a mapping ρ : V →
Q such that, for any u ∈ V , trans(D,ρ)(u) ∈ ∆. Moreover, ρ is accepting if both

final
(ı)i∈Ag

(D,ρ) ∈ F and, for any u ∈ V , we have T (λ(u), ρ(u)) ⊆ Write(u). The

intuition behind the latter condition is that we require Write(u) to contain
at least the communication requests imposed by the type function of the
automaton.2 If C is a singleton, T might be seen as a mapping (Σ×Q)→ 2Σ .

Given K ⊆ DAG(Σ̃, C), we denote by LK(A) the language of A relative to K,

i.e., the set of (Σ̃, C)-dags D ∈ K such that there is an accepting run of A on
D. However, we usually write L(A) instead of L

DAG(eΣ,C)(A).

The following lemma justifies ACATs being classified as an operational
automata model.

Lemma 5.16. Let A = (Q, ∆, T, F) be an ACAT over (Σ̃, C) and, moreover,

let D = (V, {��}�∈C , λ) be a (Σ̃, C)-dag. A mapping ρ : V → Q is a run of A
on D iff (∅, {∅}�∈C , ∅) =⇒∗

∆ (D, ρ).

Exercise 5.17. Prove Lemma 5.16.

Definition 5.18. An ACAT (Q, ∆, T, F) over (Σ̃, C) is an asynchronous cel-

lular automaton (ACA) over (Σ̃, C) if T (a, q) = ∅ for any a ∈ Σ and q ∈ Q.

Given K ⊆ DAG(Σ̃, C), let ACAT (Σ̃, C)K := {L ⊆ DAG(Σ̃, C) | L =

LK(A) for some ACAT A over (Σ̃, C)}. The class ACA(Σ̃, C)K is defined

accordingly. Also, ACAT (Σ̃, C) and ACA(Σ̃, C) shall abbreviate the classes

ACAT (Σ̃, C)
DAG(eΣ,C) and ACA(Σ̃, C)

DAG(eΣ,C), respectively. As usual, if C is

negligible, then we simply refer to Σ̃, writing, for example, ACA(Σ̃)
DAG(eΣ).

Let A = (Q, ∆, T, F) be an ACAT over (Σ̃, C). We call A deterministic
if, for any q ∈ (Q ·∪ {−})Σ×C and a ∈ Σ, there is at most one state q ∈ Q
such that q −→ (a, q) ∈ ∆. The corresponding language classes are denoted

by det-ACAT (Σ̃, C)K. For a ∈ Σ, let Qa denote the set {q ∈ Q | there is
(q, b, q′) ∈ ∆ such that (b = a and q′ = q) or q[(a, �)] = q for some � ∈ C}. We
call A state separated if the sets Qa, a ∈ Σ, are disjoint.

2 Note that we could even require T (λ(u), ρ(u)) = Write(u) without affecting the
expressiveness of ACATs.

54 5 Dags and Asynchronous Cellular Automata

a

a

a

a

b

b

b

b

(a)

a

a

b

b

b

b

(b)

Fig. 5.7. The ({a}, {b})-dags D4 and D4[1, 3] for Example 5.19 and the proof of
Lemma 5.27, respectively

Finally, given a class K ⊆ DAG(Σ̃, C), A is called adjusted to K if, for any

t ∈ ∆, there are a Q-extended (Σ̃, C)-dag D = (V, {��}�∈C , λ) ∈ 〈K, Q〉 and
a node u ∈ V such that transD(u) = t. Obviously, we can assume A to be
adjusted to K if we consider A relative to that class.

Example 5.19. Suppose Σ̃ = ({a}, {b}) and let L be the set of Σ̃-dags Dn =
(Vn, �n, λn), n ≥ 1, where Vn = {u1, . . . , un, v1, . . . , vn}, �n is the union
of {(ui, ui+1) | i ∈ {1, . . . , n − 1}}, {(vi, vi+1) | i ∈ {1, . . . , n − 1}}, and
{(vi, ui) | i ∈ {1, . . . , n}}, and the ui are labeled by λn with a, whereas the
vi are labeled with b. For example, Fig. 5.7a illustrates D4. An ACAT A over
Σ̃ with L(A) = L is (Q, ∆, T, F) where Q = {q1, q2} and ∆ contains the
following transitions (recall that there are no edge labelings):

∅ −→ (b, q2)
{(b, q2)} −→ (b, q2)
{(b, q2)} −→ (a, q1)

{(a, q1), (b, q2)} −→ (a, q1)

Moreover, we set
T (a, q1) = ∅
T (b, q1) = ∅
T (a, q2) = ∅
T (b, q2) = {a}

and F = {(q1, q2)}. The transitions and the type function ofA can be depicted
as shown in Fig. 5.8, i.e., solid arrows and the associated nodes provide graph
patterns in terms of labelings and states, while the target of a dashed arrow
indicates a communication request. An accepting run of A on Dn assigns
q1 to any a-labeled vertex and q2 to any b-labeled one. Observe that A is
deterministic and state separated. We will later see that L �∈ ACA(Σ̃).

5.3 Asynchronous Cellular Automata with Types 55

q2 b

a

q2

q2

b

b

a

q2 q1

q1

b a

a

q2

q1

b

a

Fig. 5.8. Transitions and type function of an ACAT

Example 5.20. Again, let Σ̃ = ({a}, {b}) and let L be the set of Σ̃-dags
Dn = (Vn, �n, λn), n ≥ 1, where, again, Vn = {u1, . . . , un, v1, . . . , vn}, �n is
the union of {(ui, ui+1) | i ∈ {1, . . . , n− 1}}, {(vi, vi+1) | i ∈ {1, . . . , n− 1}},
{(vi, ui) | i ∈ {1, . . . , n}}, and {(ui, vi+1) | i ∈ {1, . . . , n − 1}}. Moreover, λn

labels ui with a, whereas the vi are labeled with b. D4 is depicted in Fig. 5.9. It
turns out that, this time, even an ACA is sufficient to recognize L relative to
DAG(Σ̃). Namely, an ACA A over Σ̃ with L(A) = L is given by (Q, ∆, T, F)
specified as follows. The set of states is Q = {true, false}. If a state is assigned
to an a-labeled node, it indicates whether it is covered by a b-labeled node
(=false) or not (=true). Obviously, the corresponding process must exhibit
true in a final state. If a state is assigned to a b-labeled node, it indicates
whether we deal with the first b-labeled node (=true) or not (=false). This
is to guarantee that initial transitions can be applied only once to guarantee
the required edge structure of a dag. These ideas are reflected by ∆, which
contains the following transitions:

∅ −→ (b, true)
{(b, true)} −→ (a, q) for any q ∈ Q

{(a, false), (b, q)} −→ (b, false) for any q ∈ Q
{(a, q1), (b, q2)} −→ (a, q) for any q, q1, q2 ∈ Q

Moreover, we set F = {(true, true), (true, false)}. Though A is adjusted to

DAG(Σ̃), it is neither deterministic nor state separated.

Exercise 5.21. Specify ACATs over Σ̃ = ({a, b}, {b, c}) that recognize, rela-

tive to DAG(Σ̃), the sets of Σ̃-dags (V, �, λ) such that

(a) for any u ∈ Va, we have b ∈Write(u) or c ∈Write(u),
(b) there are nodes u ∈ Va and v ∈ Vc satisfying neither u ≤ v nor v ≤ u,
(c) there are nodes u ∈ Va and v ∈ Vc satisfying u ≤ v.

Exercise 5.22. Show that, for any deterministic ACAT A over (Σ̃, C), there

is an ACAT A′ over (Σ̃, C) such that both L(A′) = L(A) and, for any D ∈

DAG(Σ̃, C), there is exactly one run of A′ on D.

56 5 Dags and Asynchronous Cellular Automata

a

a

a

a

b

b

b

b

Fig. 5.9. D4 for Example 5.20

Exercise 5.23. Show that any ACAT A over (Σ̃, C) can be transformed into

a state separated ACAT A′ over (Σ̃, C) such that L(A′) = L(A).

Exercise 5.24. Prove that the language L
DAG⇒(eΣ)(A) of an ACAT A =

(Q, ∆, T, F) over Σ̃ remains the same if we remove from ∆ any transition
q −→ (a, q) such that

(a) q[b] �= − and q[c] �= − for some distinct actions b and c with b D eΣ c,
(b) T (a, q) contains distinct actions b and c with b D eΣ c.

Exercise 5.25. Show that, without loss of generality, we may assume an
ACAT A = (Q, ∆, T, F) over (Σ̃, C) to possess the following property: for

any q ∈ F , any i ∈ Ag with q[i] ∈ Q, any (Σ̃, C)-dag D = (V, �, λ), any
u ∈ V , and any run ρ of A on D, if ρ(u) = q[i], then u is Σi-maximal.

Exercise 5.26. Show that the expressiveness of ACATs does not change
if, in a run ρ, we require T (λ(u), ρ(u)) = Write(u) for any u instead of
T (λ(u), ρ(u)) ⊆Write(u).

5.4 ACATs vs. ACAs

In what follows, we compare in detail the expressiveness of ACATs and ACAs.
Note that some results rely on special (though simple) structures of the un-
derlying distributed alphabet.

Lemma 5.27 (cf. [29]). In general,

ACA(Σ̃) � ACAT (Σ̃)

5.4 ACATs vs. ACAs 57

Proof. Set Σ̃ = ({a}, {b}). The language L from Example 5.19 cannot be

recognized by some ACA over Σ̃ relative to DAG(Σ̃). For suppose there is an

ACA A over Σ̃ with L
DAG(eΣ)(A) = L. For n ≥ 1, suppose furthermore ρ to be

a run of A on Dn. If n has been chosen large enough, there are 1 ≤ i < j < n
such that ρ(ui) = ρ(uj). From Dn, we obtain the Σ̃-dag Dn[i, j] by removing
from Vn the vertices ui+1, . . . , uj and from �n any edge touching some of these
nodes and by adding instead an edge from ui to uj+1. Though Dn[i, j] �∈ L,
A admits an accepting run on Dn[i, j]. The reason is that, in the example, A
has no means to impose on a b-labeled vertex an a-labeled successor. �

However, the language L from the above proof is obviously FO
DAG(eΣ)-

definable. Moreover, it is easy to provide a language from ACA(Σ̃) that is
not FO

DAG(eΣ)-definable. This leads to the following corollary:

Corollary 5.28. The classes FO
DAG(eΣ) and ACA(Σ̃) are incomparable with

respect to inclusion.

Though ACATs are generally strictly more expressive than ACAs, many
distributed systems allow for dropping types. For example, if we know from
the labeling of a node whether it has a communication partner in terms of an
independent event or not, this allows us to reduce the type function accord-
ingly.

Definition 5.29 (Communication Closed). A class K ⊆ DAG(Σ̃, C) is
called communication closed if, for any (V, {��}�∈C , λ), (V ′, {�′

�}�∈C , λ′) ∈ K,
any a ∈ Σ, and any u ∈ V and u′ ∈ V ′ with λ(u) = λ′(u′) = a, we have
{(b, �) ∈Write(u) | b I eΣ a} = {(b, �) ∈Write(u′) | b I eΣ a}.

If, in addition, a local process proceeds in a sequential fashion to access its last
state when executing a further action, we can even do without type functions.

Definition 5.30 (Locally Covering). A class K ⊆ DAG(Σ̃, C) is called
locally covering if both

• for any (V, {��}�∈C , λ) ∈ K, {(u, v) ∈ � | λ(u) D eΣ λ(v)} =
⋃

i∈Ag �i

(recall that �i is the cover relation of the total order ≤i), and

• there is a mapping χ : (Σ × C ×Σ)→ 2Ag such that, for any (Σ̃, C)-dag
(V, {��}�∈C , λ) ∈ K, any � ∈ C, and any (u, v) ∈ ��, χ(λ(u), �, λ(v)) =
{i ∈ Ag | u �i v}.

Thus, a class that is locally covering allows us to infer, from the labeling of
an edge and the labelings of the associated nodes u and v (say, with u � v),
the set of agents that execute v directly after u.

Lemma 5.31. Let K ⊆ DAG(Σ̃, C). If K is both communication closed and
locally covering, then

ACA(Σ̃, C)K = ACAT (Σ̃, C)K

58 5 Dags and Asynchronous Cellular Automata

Proof. Let A = (Q, ∆, T, F) be an ACAT over (Σ̃, C). Moreover, suppose

K ⊆ DAG(Σ̃, C) is communication closed and locally covering where χ shall
be the required mapping (Σ × C ×Σ)→ 2Ag . Without loss of generality, we
furthermore assume that A is state separated. To construct an ACA that is
equivalent to A relative to K, we perform the following steps.

1. For any (a, q) ∈ Σ×Q and (b, �) ∈ T (a, q): if, for any (V, {��}�∈C , λ) ∈ K
and u ∈ Va, we have (b, �) �∈Write(u), then
• remove from ∆ any transition q −→ (a, q) and
• set T (a, q) = ∅.

2. For any a, b ∈ Σ with a I eΣ b and any � ∈ C such that K (which is com-
munication closed) requires an a-labeled vertex u to be directly followed
by some b-labeled vertex v satisfying u �� v, we can, without changing
the recognized language relative to K,
• remove (b, �) from any communication request T (a, q).

3. For any (a, q) ∈ Σ × Q and any remaining (b, �) ∈ T (a, q) (note that,
henceforth, we have both a D eΣ b and χ(a, �, b) �= ∅), we may
• remove (b, �) from T (a, q),
• remove from ∆ any transition q −→ (c, q′) such that there is �′ ∈ C

satisfying q[(a, �′)] = q, (c, �′) �= (b, �), and χ(a, �, b) ∩ χ(a, �′, c) �= ∅,
and

• remove from F any q ∈ (Q ·∪ {ı})Ag with q[i] = q for some i ∈ χ(a, �, b).

In fact, we finally gain an ACA (thus, with negligible type function), which,
moreover, is equivalent to A relative to K. �

The classes TR+(Σ̃) and TR−(Σ̃) of M+- and, respectively, M−-traces are
trivially communication closed, as no pair of neighboring nodes can be la-
beled with independent actions. However, TR+(Σ̃) is locally covering, whereas

TR−(Σ̃) is not. The required mapping for TR+(Σ̃) simply assigns � to any

triple (a, �, b) ∈ Σ × 2Ag × Σ. In contrast, an event in a trace from TR−(Σ̃)
can access only the nodes it covers with respect to �. The class MSC(Ag)
is communication closed, too: any sending vertex has exactly one successor
vertex, labeled with the corresponding receive action, that is not controlled
by the same agent. However, the class LMSC(Ag) of lossy MSCs is not com-
munication closed and can no longer do without types, as an easy adaption
of the proof of Lemma 5.27 shows. The reader may verify that, however, both
MSC(Ag) and LMSC(Ag) are locally covering.

Corollary 5.32.

(a) ACA(Σ̃, 2Ag)
TR+(eΣ) = ACAT (Σ̃, 2Ag)

TR+(eΣ),

(b) ACA(Γ̃ (Ag))MSC(Ag) = ACAT (Γ̃ (Ag))MSC(Ag).

Note that, however, we will argue that ACA(Σ̃)
TR−(eΣ) = ACAT (Σ̃)

TR−(eΣ)

holds as well (cf. Chap. 6).

5.4 ACATs vs. ACAs 59

Exercise 5.33. Suppose Σ̃ = ({a, b}, {b, c}). Are the collections of Σ̃-dags
(V, �, λ) such that

(a) Vb = ∅,
(b) Vc = ∅,
(c) V is totally ordered by ≤,
(d) for any (u, v) ∈ �, u ∈ Va implies v ∈ Vc and u ∈ Vc implies v ∈ Vb,

communication closed or not? Which are locally covering?

Lemma 5.34. In general,

DAG⇒(Σ̃) �∈ ACA(Σ̃)

Proof. Let us fix the distributed alphabet Σ̃ = ({a}, {c, d}). We proceed sim-

ilarly to the proof of Lemma 5.27 and consider fifo-dags over Σ̃ of the form
presented in Fig. 5.10a, which are basically equipped with two rows of nodes,
the one labeled with a and the other labeled with either c or d. Clearly, there
must be such a fifo-dag D = (V, �, λ) and an accepting run ρ of the ACA A
at hand on D such that the pattern illustrated in the figure (i.e., with nodes
labeled a, c, and d and states, say, qa, qc, and qd) occurs twice. Merging the
two c-labeled nodes and both d-labeled nodes while removing any other node
in that row in between the two patterns results in a Σ̃-dag such as the one
illustrated by Fig. 5.10b, which will be accepted by A but is not a fifo-dag
over Σ̃. �

qa

qa

qc

qd

qc

qd

a

a

a

a

a

c

d

d

c

d

(a)

qa

qa

qc

qd

a

a

a

a

a

c

d

(b)

Fig. 5.10. A fifo-dag over ({a}, {c, d}) and an ({a}, {c, d})-dag that is not a fifo-dag
over ({a}, {c, d})

60 5 Dags and Asynchronous Cellular Automata

Exercise 5.35. Show or disprove:

(a) DAG⇒(({a, b}, {b, c})) ∈ ACA(({a, b}, {b, c})),
(b) DAG⇒(({a, b}, {b, c})) ∈ ACA(({a}, {b}, {c})).

Exercise 5.36. Show that

(a) MSC �∈ ACA(Γ̃),

(b) MSC ∈ ACAT (Γ̃),

(c) LMSC ∈ ACA(Γ̃).

Given two ACATs, one can obviously construct ACATs to recognize their
intersection and union.

Lemma 5.37. ACAT (Σ̃, C) is closed under union and intersection.

Proof. Suppose A1 = (Q1, ∆1, T1, F1) and A2 = (Q2, ∆2, T2, F2) are ACATs

over (Σ̃, C). We build A1 × A2 = (Q, ∆, T, F), an ACAT over (Σ̃, C) such
that L(A1 ×A2) = L(A1) ∩ L(A2). It is given by

• Q = Q1 ×Q2,
• ∆ = {(q, b, q) ∈ Trans(eΣ,C)(Q) | there are (q1, b, q1) ∈ ∆1 and (q2, b, q2) ∈

∆2 such that, for any (a, �) ∈ Σ × C, both q[(a, �)] = − implies q1[(a, �)] =
q2[(a, �)] = − and q[(a, �)] ∈ Q implies q[(a, �)] = (q1[(a, �)], q2[(a, �)])},

• T (a, (q1, q2)) = T1(a, q1) ∪ T2(a, q2) for any a ∈ Σ and (q1, q2) ∈ Q, and
• F = {q ∈ (Q ·∪ {ı})Ag | there are q1 ∈ F1 and q2 ∈ F2 such that, for

any i ∈ Ag , both q[i] = ı implies q1[i] = q2[i] = ı and q[i] ∈ Q implies
q[i] = (q1[i], q2[i])}.

The proof of closure under union proceeds similarly. Basically, the new state
space is the disjoint union of the original ones. Accordingly, the same applies
to the transitions. Proof details are left to the reader as an exercise. �

5.5 The Expressive Equivalence of ACATs and EMSO
Logic

In this section, we establish the expressive equivalence of ACATs and EMSO
logic. The easier part is to provide an EMSO formula for a given ACAT. We
hereby mainly follow similar constructions applied, for example, to finite and
the similar asynchronous automata (cf. Theorem 4.10 and [29] for examples).

Lemma 5.38.

ACAT (Σ̃, C) ⊆ EMSO(Σ, C)
DAG(eΣ,C)

5.5 The Expressive Equivalence of ACATs and EMSO Logic 61

Proof. The construction of an EMSO sentence from a given ACAT proceeds
as follows. Basically, an interpretation of second-order variables (actually, an
interpretation that stands for a partition (Xq)q∈Q of the set of vertices at
hand) means an assignment of states to vertices, which is then checked within
the first-order fragment of the formula for being an accepting run. For sim-
plicity, we suppose Ag = {1, . . . , K} for some K ≥ 2. Moreover, suppose

A = (Q, ∆, T, F) to be an ACAT over (Σ̃, C) with set of states Q = {1, . . . , n}.
To check if, at the end of a run on a dag, the system is in some global final
state q ∈ F , we assume that, for any agent i ∈ Ag with q[i] �= ı, there is a set
of nodes X that is upwards-closed and contains exactly one node x belonging
to i. In that case, x is Σi maximal and shall be contained in Xq[i]. Therefore,
we define a formula maxi(x, X), which is satisfied if both X is upward-closed
and x is the only node contained in X that is labeled with some a ∈ Σi:

maxi(x, X) := λ(x) ∈ Σi

∧ x ∈ X

∧ ∀y∀z ((y ∈ X ∧ y � z)→ z ∈ X)

∧ ∀y ((y ∈ X ∧ λ(y) ∈ Σi)→ y = x)

To ensure that the past of a node x corresponds to a transition, we use

Trans(x, X1, . . . , Xn) :=∨
{((a1,q1),�1),...,((am,qm),�m)}−→(a,q)∈∆

x ∈ Xq

∧ λ(x) = a

∧
∧

k∈{1,...,m} ∃y(y ��k
x ∧ λ(y) = ak ∧ y ∈ Xk)

∧ ∀y
(
y � x→

∨
k∈{1,...,m} (y ��k

x ∧ λ(y) = ak)
)

To guarantee acceptance, we require formulas

Type(X1, . . . , Xn) :=

∀x
∧

a∈Σ, q∈Q

(
(λ(x) = a ∧ x ∈ Xq)→

∧
(b,�)∈T (a,q) ∃y(x �� y ∧ λ(y) = b)

)
simulating T and, for any q ∈ (Q ·∪ {ı})Ag ,

Finalq(X1, . . . , Xn, Y1, . . . , YK) :=∧
i∈Ag, q[i]∈Q ∃x

(
maxi(x, Yi) ∧ x ∈ Xq[i]

)
∧

∧
i∈Ag, q[i]=ı ¬∃x λ(x) ∈ Σi

The above formulas can now be combined towards an EMSO(Σ, C)-sentence
Ψ with L

DAG(eΣ,C)(Ψ) = L(A) as follows:

62 5 Dags and Asynchronous Cellular Automata

Ψ = ∃X1 . . .∃Xn ∃Y1 . . .∃YK

partition(X1, . . . , Xn)

∧ ∀x Trans(x, X1, . . . , Xn)

∧ Type(X1, . . . , Xn)

∧
∨

q∈F Finalq(X1, . . . , Xn, Y1, . . . , YK)

Recall that partition(X1, . . . , Xn), Trans(x, X1, . . . , Xn), Type(X1, . . . , Xn),
and Finalq(X1, . . . , Xn, Y1, . . . , YK) are first-order formulas without second-
order quantifiers. �

The following proposition is one step towards the transformation of an
EMSO sentence into an equivalent ACAT.

Proposition 5.39. Let R ∈ IN. There are an ACAT AR = (Q, ∆, T, F) over

(Σ̃, C) and a mapping η : Q → R-Sph(DAG(Σ̃, C)) such that L(AR) =

DAG(Σ̃, C) and, for any D = (V, {��}�∈C , λ) ∈ DAG(Σ̃, C), any accepting
run ρ of AR on D, and any u ∈ V , we have η(ρ(u)) = R-Sph(D, u).

Proof. Set S to be R-Sph(DAG(Σ̃, C)). Basically, any state of AR makes a
guess about the local environment of radius R that it is about to read and then
verifies its guess by passing it through a run and checking if other components
have made their guess accordingly. A guess is actually an extended R-sphere
σ = (V, {��}�∈C , λ, γ, α, inst) where core(σ) := (V, {��}�∈C , λ, γ) ∈ S is the
pattern that AR expects to see, α ∈ V is the active vertex, which corresponds
to the vertex that AR is about to read, and inst ∈ {1, . . . , const} is the current
instance of the pattern where const is given by (2|Σ × C| + 1) · (max{|V | |
(V, {��}�∈C , λ, γ) ∈ S})2 + 1. The ACAT AR, reading some vertex u and
entering a state associated with a guess σ, presumes that u is to its local
environment as α is to core(σ). In other words, AR considers u to be the
counterpart of α and the environment of u to look like core(σ). To establish
isomorphism between core(σ) and the environment around u, AR transfers σ
to the immediate successor vertices u′ of u except that, in σ, the active vertex
α is replaced with some α′ such that α � α′. This is because u shall correspond
to u′ only if α corresponds to α′. As a tiling of a graph induces an overlapping
of participating spheres, a state of AR actually holds a set of extended R-
spheres, which subsequently have to be forwarded and verified simultaneously.
The state q entered when reading u carries exactly one extended R-sphere σ
whose sphere center and active vertex coincide with the understanding that
the environment of u of radius R is isomorphic to core(σ) so that we may
set η(q) to be core(σ). There may even be an overlapping of isomorphic R-
spheres so that a state possibly contains several instances of one and the same
sphere, which then refer to distinct vertices as corresponding sphere centers.
Those instances will be distinguished by means of the natural number inst .
However, there can be at most const such overlappings, an order of magnitude
that depends on (Σ̃, C) and R only.

5.5 The Expressive Equivalence of ACATs and EMSO Logic 63

Table 5.1. Keeping track of spheres by means of an ACAT

Let (S, b,S ′) ∈ ∆ if the following hold:

L λ(S ′) = b.

For any (a, �) ∈ Σ × C with S[(a, �)] �= −, any σ ∈ S[(a, �)], and any v ∈ V :

W1 If σ[v] ∈ S ′, then α �� v.

W2 If (b, �) �∈ Write(α), then d(α, γ) = R.

W3 If (b, �) ∈ Write(α), then σ[(b, �)-succ(α)] ∈ S ′.

For any (a, �) ∈ Σ × C and any σ ∈ S ′:

R1 If S[(a, �)] �= − and (a, �) �∈ Read(α), then d(α, γ) = R.

R2 If (a, �) ∈ Read(α), then σ[(a, �)-pred(α)] ∈ S[(a, �)] �= −.

Now set S+ to be the set of extended R-spheres that emerge from S,
i.e., S+ := {(V, {��}�∈C , λ, γ, α, inst) | (V, {��}�∈C , λ, γ) ∈ S, α ∈ V , and
inst ∈ {1, . . . , const}}. In the scope of extended R-spheres σ, σ′ ∈ S+, in the
following, we let V, {��}�∈C , λ, γ, α, inst and V ′, {�′

�}�∈C , λ′, γ′, α′, inst ′ refer
to the components of σ and σ′, respectively. Given σ ∈ S+ and v ∈ V , σ[v]
shall denote (V, {��}�∈C , λ, γ, v, inst) ∈ S+, in which the active vertex α of σ
is replaced with a new active vertex v.

Let us now turn to the construction of the ACAT AR = (Q, ∆, T, F),
which is given as follows: a state from Q is a (nonempty) subset S of S+ such
that

• there is exactly one extended sphere σ ∈ S with γ = α (we set core(S) to
be core(σ)),

• there is a ∈ Σ such that, for any σ ∈ S, λ(α) = a (so that we can assign
a well-defined unique label λ(S) := a to S), and

• for any σ, σ′ ∈ S, if core(σ) = core(σ′) and inst = inst ′, then α = α′.

The definition of ∆ is given by Table 5.1. Condition L goes without saying.
Now assume an extended sphere σ with active vertex α is attached to some
u. Assume furthermore that σ[v] is attached to some direct successor u′ of u.
As α and v have to simulate u and u′ (and vice versa), they have to be joined
by an edge as well. This is what condition W1 is supposed to guarantee.
Suppose now that α lacks a (b, �)-successor, while u does not. That situation
is allowed only if the distance from α to γ is R, as then the scope of σ ends
anyway so that, beyond u, it is no longer responsible for what will happen
(W2). Otherwise, if (b, �) is contained in the write domain of α, then σ has to
coincide with the input structure further on so that σ[(b, �)-succ(α)] is sent to
the (b, �)-successor of u (W3). The duals of W2 and W3, regarding the read
domain of a vertex, are guaranteed by conditions R1 and R2, respectively.
Note that condition W1 lacks its dual case, as this is implicitly present.

64 5 Dags and Asynchronous Cellular Automata

Let us now turn to the type function and the set of final states of AR:
for any a ∈ Σ and S ∈ Q, we set T (a,S) to be {(b, �) ∈ (Σ, C) | there is
σ ∈ S such that (b, �) ∈Write(α)}, i.e., if the active vertex of some extended
sphere from S has some (b, �)-successor, then so will the vertex to which S is
attached. Finally, we just set F to be (Q ·∪ {ı})Ag . The mapping η as required
in the proposition is provided by core, i.e., we set η(S) = core(S).

Any Dag Is Accepted

Let D = (Ṽ , {�̃�}�∈C , λ̃) ∈ DAG(Σ̃, C). We show that there is an accepting

run ρ of AR on D such that, for any u ∈ Ṽ , core(ρ(u)) = R-Sph(D, u). In the

following, let ρ̂ stand for the mapping Ṽ → S that maps a vertex u ∈ Ṽ onto
the R-sphere of D around u.

First of all, we will distribute instance numbers to each of the involved
spheres. There is a mapping χD : Ṽ → {1, . . . , const} such that, for any

u, u′, v, v′ ∈ Ṽ with ρ̂(u) = ρ̂(u′), u �= u′, d(v, u) ≤ R, and d(v′, u′) ≤ R, if
v �̃ v′ or v′ �̃ v or v = v′, then χD(u) �= χD(u′). We can reduce the existence

of χD to the existence of a graph coloring: let G be the graph (Ṽ ,Arcs)

(without labeling function) where, for any u, u′ ∈ Ṽ , (u, u′) ∈ Arcs iff u �= u′,

ρ̂(u) = ρ̂(u′), and there is v, v′ ∈ Ṽ with d(v, u) ≤ R, d(v′, u′) ≤ R, and
(v �̃ v′ or v′ �̃ v or v = v′). As G cannot be of degree greater than const− 1

(for each u ∈ Ṽ , there are at most 2|Σ × C|+ 1 distinct vertices u′ ∈ Ṽ such
that u �̃ u′, u′ �̃ u, or u = u′), it can be const-colored by some mapping χ :

Ṽ → {1, . . . , const}, i.e., (u, v) ∈ Arcs implies χ(u) �= χ(v) for any u, v ∈ Ṽ .
Now just set χD to be χ.

In the scope of extended R-spheres σ and σ′ from S+, we continue to let
V, {��}�∈C , λ, γ, α, inst and V ′, {�′

�}�∈C , λ′, γ′, α′, inst ′ refer to the compo-

nents of σ and σ′, respectively. The accepting run ρ : Ṽ → Q of AR on D is
defined as follows: for u ∈ Ṽ , we set ρ(u) = {σ ∈ S+ | there is u′ ∈ Ṽ such
that d(u′, u) ≤ R, (core(σ), α) = (ρ̂(u′), u), and inst = χD(u′)}.

For u ∈ Ṽ , we first verify that, in fact, ρ(u) is a valid state of AR. So sup-
pose there are extended R-spheres σ, σ′ ∈ ρ(u). Of course, λ(α) = λ′(α′).
Assume now that both γ = α and γ′ = α′. But then the requirements
(core(σ), γ) = (ρ̂(u), u) and (core(σ′), γ′) = (ρ̂(u), u) imply (core(σ), γ) =
(core(σ′), γ′). In particular, core(ρ(u)) = core(σ) = ρ̂(u). Furthermore,
inst = inst ′ = χD(u). Now assume core(σ) = core(σ′) and inst = inst ′. There

are vertices u1, u2 ∈ Ṽ such that d(u1, u) ≤ R, d(u2, u) ≤ R, (core(σ), α) =
(ρ̂(u1), u), (core(σ), α′) = (ρ̂(u2), u), and inst = χD(u1) = χD(u2). Clearly,
we have ρ̂(u1) = ρ̂(u2). Furthermore, u1 = u2 and, consequently, α = α′. This
is because u1 �= u2 implies χD(u1) �= χD(u2), which contradicts the premise.

In the following, we verify that ρ is a run of AR on D. For any u ∈ Ṽ ,
we check that trans(D,ρ)(u) ∈ ∆. So suppose trans(D,ρ)(u) = (S, λ̃(u),S ′) for

some S and S ′.

L Of course, λ(S ′) = λ̃(u).

5.5 The Expressive Equivalence of ACATs and EMSO Logic 65

W1 Let (a, �) ∈ Σ × C and σ ∈ S[(a, �)] �= − and suppose there is v ∈ V such

that σ[v] ∈ S ′. We set u− ∈ Ṽ to be (a, �)-pred(u). There is u−′
, u′ ∈

Ṽ such that d(u−′
, u−) ≤ R, d(u′, u) ≤ R, σ = (ρ̂(u−′

), u−, inst), and
σ[v] = (ρ̂(u′), u, inst) with inst = χD(u−′

) = χD(u′). We show u−′
= u′,

as then σ = (ρ̂(u′), u−, inst), σ[v] = (ρ̂(u′), u, inst), and u− �̃ u implies
α � v. But u−′

�= u′ implies inst = χD(u−′
) �= χD(u′), which leads to a

contradiction to the above assumption.
W2 Let (a, �) ∈ Σ × C and σ ∈ S[(a, �)] �= − with (λ̃(u), �) �∈Write(α) and set

u− ∈ Ṽ to be (a, �)-pred(u). As S[(a, �)] = ρ(u−), there is u−′
∈ Ṽ such

that both d(u−′
, u−) ≤ R and (core(σ), α) = (ρ̂(u−′

), u−). As (λ̃(u), �) ∈
Write(u−), we have d(γ, α) = d(u−′

, u−) = R.

W3 Let (a, �) ∈ Σ × C and suppose there is σ ∈ S[(a, �)] �= − with (λ̃(u), �) ∈

Write(α). Set u− to be (a, �)-pred(u) and α+ to be (λ̃(u), �)-succ(α). As

we have S[(a, �)] = ρ(u−), there exists u−′
∈ Ṽ with d(u−′

, u−) ≤ R,
(core(σ), α) = (ρ̂(u−′

), u−), and inst = χD(u−′
). Since, then, d(u−′

, u) =
d(γ, α+) ≤ R and also (core(σ), α+) = (ρ̂(u−′

), u), we have σ[α+] ∈ S ′.
R1 Let (a, �) ∈ Σ × C. Suppose S[(a, �)] �= − and suppose there is σ ∈

S ′ with (a, �) �∈ Read(α). There is u′ ∈ Ṽ such that d(u′, u) ≤ R and
(core(σ), α) = (ρ̂(u′), u). As S[(a, �)] �= −, we have (a, �) ∈ Read(u) and,
consequently, d(γ, α) = d(u′, u) = R.

R2 Let (a, �) ∈ Σ × C and suppose there is σ ∈ S ′ with (a, �) ∈ Read(α). Let

α− denote (a, �)-pred(α). As ρ(u) = S ′, there is u′ ∈ Ṽ with d(u′, u) ≤ R
such that (core(σ), α) = (ρ̂(u′), u) and inst = χD(u′). As a consequence,

(a, �) ∈ Read(u) so that there is u− ∈ Ṽ with u− �̃� u and λ̃(u−) = a. As,
furthermore, d(u′, u−) = d(γ, α−) ≤ R and (core(σ), α−) = (ρ̂(u′), u−),
we have σ[α−] ∈ S[(a, �)] �= −.

Moreover, we easily see that ρ is accepting.

Any Run Keeps Track of Spheres

In what follows, we show that, indeed, any accepting run of AR tells us about
the environment of any node. More precisely, in an accepting run, a state q
can be assigned to a node u only if the environment of u looks like η(q) (recall
that η was determined to be core).

Let ρ be an accepting run of AR on D = (Ṽ , {�̃�}�∈C , λ̃) ∈ DAG(Σ̃, C).

We show that, for any u ∈ Ṽ , core(ρ(u)) = R-Sph(D, u). In the following, let

ρ̂ be the mapping Ṽ → S that maps any u ∈ Ṽ to core(ρ(u)), i.e., ρ̂ is given
by core ◦ ρ.

Claim 5.40. For each u ∈ Ṽ , σ ∈ ρ(u), and d ∈ IN, if there is a sequence of
vertices v0, . . . , vd ∈ V such that v0 = α and, for each k ∈ {0, . . . , d−1}, vk �

vk+1 or vk+1 � vk, then there is a unique sequence of vertices u0, . . . , ud ∈ Ṽ
with

66 5 Dags and Asynchronous Cellular Automata

• u0 = u,
• for each k ∈ {0, . . . , d}, σ[vk] ∈ ρ(uk) (and therefore λ(vk) = λ̃(uk)), and
• for each k ∈ {0, . . . , d − 1} and � ∈ C, uk �̃� uk+1 iff vk �� vk+1 and

uk+1 �̃� uk iff vk+1 �� vk.

Proof of Claim 5.40. We proceed by induction. Obviously, the statement holds
for d = 0. Now assume there is a sequence of vertices v0, . . . , vd, vd+1 ∈ V such
that v0 = α and, for each k ∈ {0, . . . , d}, vk � vk+1 or vk+1 � vk. By the

induction hypothesis, there is a unique sequence of vertices u0, . . . , ud ∈ Ṽ
satisfying the above conditions. Let � ∈ C and suppose that

• vd �� vd+1. As then (λ(vd+1), �) ∈ Write(vd) and due to the definition of

the type function of AR, there must be a unique vertex ud+1 ∈ Ṽ with

ud �̃� ud+1 and λ̃(ud+1) = λ(vd+1). Furthermore, due to condition W3,
we have σ[vd+1] ∈ ρ(ud+1).

• vd+1 �� vd. Then, there is, according to condition R2, a unique ud+1 ∈ Ṽ
with ud+1 �̃� ud and σ[vd+1] ∈ ρ(ud+1). This shows Claim 5.40. �

We have to prove that, for each u ∈ Ṽ , the R-sphere of (Ṽ , {�̃�}�∈C , λ̃)

around u is isomorphic to ρ̂(u). So let u ∈ Ṽ , set (V, {��}�∈C , λ, γ) to
be ρ̂(u), and let inst ∈ {1, . . . , const} be the unique element with σ :=
(V, {��}�∈C , λ, γ, γ, inst) ∈ ρ(u).

Claim 5.41. For each d ∈ {0, . . . , R}, there is an isomorphism

h : d-Sph((Ṽ , {�̃�}�∈C , λ̃), u)→ d-Sph((V, {��}�∈C , λ), γ)

such that, for any u′ ∈ Ṽ with d(u′, u) ≤ d, σ[h(u′)] ∈ ρ(u′).

Proof of Claim 5.41. We proceed by induction. Of course, the statement
holds for d = 0. Now assume that d < R and that there is an isomorphism
h : d-Sph((Ṽ , {�̃�}�∈C , λ̃), u)→ d-Sph((V, {��}�∈C , λ), γ) such that, for each

u′ ∈ Ṽ with d(u′, u) ≤ d, σ[h(u′)] ∈ ρ(u′).

Extended Sphere Simulates Dag

Suppose there is u1, u
′
1, u2, u

′
2 ∈ Ṽ such that d(u, u1) = d(u, u2) = d,

d(u, u′
1) = d(u, u′

2) = d + 1, (u1 �̃ u′
1 or u′

1 �̃ u1), and (u2 �̃ u′
2 or u′

2 �̃ u2).
Given � ∈ C, suppose (let v1 and v2 denote h(u1) and h(u2), respectively)

• u1 �̃� u′
1. As d(u, u1) < R, we have d(γ, v1) < R. Due to W2, there is

v′1 ∈ V with v1 �� v′1 and λ(v′1) = λ̃(u′
1) and, due to W3 and σ[v1] ∈ ρ(u1),

σ[v′1] ∈ ρ(u′
1).

• u′
1 �̃� u1. As d(u, u1) is less than R, so is d(γ, v1). Due to R1, there is

v′1 ∈ V with v′1 �� v1 and λ(v′1) = λ̃(u′
1) and, due to R2 and σ[v1] ∈ ρ(u1),

σ[v′1] ∈ ρ(u′
1).

5.5 The Expressive Equivalence of ACATs and EMSO Logic 67

Thus, depending on u′
1, we obtain from v1 a unique vertex v′1 ∈ V , which

we denote by h′(u′
1). According to the above scheme, we obtain from v2 a

unique vertex v′2 ∈ V , denoted by h′(u′
2). Then d(v′1, γ) = d(v′2, γ) = d + 1.

Now suppose, given � ∈ C,

• u′
1 �̃� u′

2. As σ[v′1] ∈ ρ(u′
1) and σ[v′2] ∈ ρ(u′

2), it follows from W1 that
v′1 �� v′2.

• u′
1 = u′

2. Then, σ[v′1] ∈ ρ(u′
1) and σ[v′2] ∈ ρ(u′

1) implies v′1 = v′2.

The case u′
2 �̃� u′

1 can be handled analogously and the cases u′
1 ��̃� u′

2 and
u′

1 �= u′
2 as below.

Dag Simulates Extended Sphere

Suppose there is v1, v
′
1, v2, v

′
2 ∈ V such that d(v1, γ) = d(v2, γ) = d, d(v′1, γ) =

d(v′2, γ) = d + 1, (v1 � v′1 or v′1 � v1), and (v2 � v′2 or v′2 � v2). We now
proceed as in the proof of Claim 5.40. So let � ∈ C and suppose (let u1 and
u2 denote h−1(v1) and h−1(v2), respectively)

• v1 �� v′1. Then, there is u′
1 ∈ Ṽ with u1 �̃� u′

1 and, due to W3, σ[v′1] ∈
ρ(u′

1).

• v′1 �� v1. According to R2, there is u′
1 ∈ Ṽ with u′

1 �̃� u1 and σ[v′1] ∈
ρ(u′

1).

According to the above scheme, we obtain from u2 a unique vertex u′
2. Now

let � ∈ C and suppose

• v′1 �� v′2. Assume u′
1 ��̃� u′

2. According to the definition of the set of states
of AR, v′1 �= v′2, σ[v′1] ∈ ρ(u′

1), and σ[v′2] ∈ ρ(u′
2) imply u′

1 �= u′
2. But then,

following the scheme depicted in Fig. 5.11, we can construct an infinite
sequence û1, û2, . . . ∈ Ṽ inducing an infinite set of (pairwise distinct) ver-

tices: Set û1 ∈ Ṽ to be the unique λ(v′2)-labeled vertex satisfying u′
1 �̃� û1.

We have σ[v′2] ∈ ρ(û1). Suppose û1 <̃ u′
2 (the other case is handled analo-

gously). According to Claim 5.40, there is û2 ∈ Ṽ such that σ ∈ ρ(û2) and
û2 <̃ u. (There is a path in (V, {��}�∈C , λ) from v′2 to γ that, according to
Claim 5.40, takes D from u′

2 to u. Apply this path to û1 yielding a path to

a unique vertex û2 ∈ Ṽ with σ ∈ ρ(û2). From û1 <̃ u′
2 and the definition of

a (Σ̃, C)-dag, it easily follows that û2 <̃ u.) Similarly, there is û3 ∈ Ṽ with

σ[v′1] ∈ ρ(û3) and û3 <̃ u′
1. Now let û4 ∈ Ṽ be the unique vertex such that

û3 �̃� û4 and σ[v′2] ∈ ρ(û4) and let, again following Claim 5.40, û5 ∈ Ṽ

be a vertex with σ ∈ ρ(û5) and û5 <̃ û2, and û6 ∈ Ṽ be a vertex with
σ[v′1] ∈ ρ(û6) and û6 <̃ û3. Continuing this scheme yields an infinite set of
vertices, contradicting the premise that we deal with finite structures.

• v′1 = v′2. Again, assuming u′
1 �= u′

2, we generate a sequence û1, û2, . . . ∈ Ṽ
inducing an infinite set of vertices as follows: suppose u′

1 <̃ u′
2. According

to Claim 5.40, we can find û1 ∈ Ṽ such that σ ∈ ρ(û1) and û1 <̃ u.

Furthermore, there is û2 ∈ Ṽ satisfying σ[v′1] ∈ ρ(û2) and û2 <̃ u′
1 and so

on.

68 5 Dags and Asynchronous Cellular Automata

�

�

u′
2

bu1

u′
1

bu4

bu3

bu6

u

bu2

bu5

σ[v′
2]

σ[v′
2]

σ[v′
1]

σ[v′
2]

σ[v′
1]

σ[v′
1]

σ

σ

σ

Fig. 5.11. An infinite sequence of vertices

The other cases are handled analogously. From the above results, we conclude
that the mapping

ĥ : (d + 1)-Sph((Ṽ , {�̃�}�∈C , λ̃), u)→ (d + 1)-Sph((V, {��}�∈C , λ), γ)

with ĥ(w) = h(w) if d(w, u) ≤ d and ĥ(w) = h′(w) if d(w, u) = d + 1 (for

w ∈ Ṽ with d(w, u) ≤ d+1) is an isomorphism satisfying, for any w ∈ Ṽ with

d(w, u) ≤ d + 1, σ[ĥ(w)] ∈ ρ(w). This concludes the proof of Claim 5.41. �

Altogether, we have shown Proposition 5.39. �

Example 5.42. In the following, let H denote the 2-sphere in part (a) from
Fig. 3.1 on page 23 (neglecting the edge labelings). Figure 5.12, showing some
(({a}, {b}, {c}, {d}),−)-dag D, illustrates the transition behavior of the ACAT
AR from the proof of Proposition 5.39. It demonstrates how a run of AR on
D transfers extensions of H from one vertex of D to a neighboring one to
make sure that the 2-sphere around uc (which is indicated by solid edges) is
isomorphic to H. For example, the state that is taken on event ua may contain
the extended sphere (H, a). (For clarity, control states and the natural number
inst to distinguish different instances of spheres are omitted.) As a � b (with
respect to the edge relation of H), the type function of AR makes sure that
ua has a b-labeled successor vertex ub, which, by W3, must carry (H, b).
Again, ub cannot be part of a global final state and is followed by some uc,
which has to be associated with a state containing (H, c) (W3). In contrast,
uh is not allowed to carry (H, e), unless it belongs to a different instance of H

(W1). Now consider ud, which holds the extended sphere (H, d). Due to R2,
the preceding state that is associated to uc must contain (H, c), which means

5.5 The Expressive Equivalence of ACATs and EMSO Logic 69

a b

a b

a b

c

c

ad

ad

ua ub

uh uc

ue ud

uf

ug

Fig. 5.12. The transitions of AR to simulate a graph acceptor

that a run cannot simply enter H beginning with d. The same applies to ud,
which must contain (H, d). Note that, as d(a, c) = d(e, c) = 2, the (illustrated
parts of the) states assigned to ua and ue satisfy W2 and R1.

Lemma 5.43. For any t ∈ IN and any α ∈ Cond(Σ, t), there is an ACA

Aα over (Σ̃, C) such that, for any D ∈ DAG(Σ̃, C), we have D ∈ L(Aα) iff
D |= α.

Proof. We specify Aα = (Q, ∆, T, F) as follows. Let Q = {q | q : Σ →
{0, . . . , t}}. Of course, T (a, q) = ∅ for any (a, q) ∈ Σ ×Q. Moreover,

{((a1, q1), �1), . . . , ((an, qn), �n)} −→ (b, q) ∈ Trans(eΣ,C)(Q)

is contained in ∆ if, for any a ∈ Σ, q(a) is the minimum of t and{
max({0} ∪ {qk(a) | k ∈ {1, . . . , n}}) if a �= b

max({1} ∪ {qk(a) + 1 | k ∈ {1, . . . , n}}) if a = b

Given q ∈ (Q ·∪ {ı})Ag , we define the mapping fq : Σ → {0, . . . , t} and, for
a ∈ Σ, set fq(a) to be max({0} ∪ {q[i](a) | i ∈ Ag , q[i] �= ı}). Finally, we may
set F = {q ∈ (Q ·∪ {ı})Ag | fq |= α}. �

70 5 Dags and Asynchronous Cellular Automata

Lemma 5.44.

EMSO(Σ, C)
DAG(eΣ,C) ⊆ ACAT (Σ̃, C)

Proof. Suppose ϕ to be an EMSO(Σ, C)-sentence. According to Theorem
3.24, there is a graph acceptor B = (Q, R, S,Occ) over (Σ, C) (with Occ ∈
Cond(S, t) for some t ∈ IN) such that L

DAG(eΣ,C)(B) = L
DAG(eΣ,C)(ϕ). Our

aim is to transform B into an ACAT A over (Σ̃, C) such that L(A) =
L

DAG(eΣ,C)(B).

We define a distributed alphabet 〈Σ̃, Q〉 := (Σi × Q)i∈Ag . Note that

〈DAG(Σ̃, C), Q〉 ⊆ DAG(〈Σ̃, Q〉, C). From Proposition 5.39, we know that
we can assume the existence of an ACAT AR = (QR, ∆R, TR, FR) over

(〈Σ̃, Q〉, C) and a mapping η : QR → R-Sph(DAG(〈Σ̃, Q〉, C)) such that

L(AR) = DAG(〈Σ̃, Q〉, C) and, for any (〈Σ̃, Q〉, C)-dag D = (V, {��}�∈C , λ),
any accepting run ρ of AR on D, and any u ∈ V , we have η(ρ(u)) =
R-Sph(D, u). From AR, we first construct an ACAT A′ = (Q′, ∆′, T ′, F ′)

over (〈Σ̃, Q〉, C) such that L(A′) = {D ∈ DAG(〈Σ̃, Q〉, C) | D |= Occ and

|D|H = 0 for any H ∈ R-Sph(DAG(〈Σ̃, Q〉, C)) \ S}. Here, we proceed simi-
larly to the proof of Lemma 5.43 to implement a threshold counting procedure.
So let Q′ be the cartesian product of QR and {q | q : S → {0, . . . , t}}. We
set T ′((a, p), (S, q)) = TR((a, p),S) for any (a, p) ∈ Σ × Q and (S, q) ∈ Q′.
Moreover,

{(((a1, p1), (S1, q1)), �1), . . . , (((an, pn), (Sn, qn)), �n)} −→ ((b, p), (S, q))

from Trans(〈 eΣ,Q〉,C)(Q
′) is contained in ∆′ if

{(((a1, p1),S1), �1), . . . , (((an, pn),Sn), �n)} −→ ((b, p),S) ∈ ∆R,

η(S) ∈ S, and, for any H ∈ S, q(H) is the minimum of t and{
max({0} ∪ {qk(H) | k ∈ {1, . . . , n}}) if H �= η(S)

max({1} ∪ {qk(H) + 1 | k ∈ {1, . . . , n}}) if H = η(S)

Given q ∈ (Q′ ·∪ {ı})Ag , we define the mapping fq : S→ {0, . . . , t} by setting,
for H ∈ S, fq(H) to be max({0} ∪ {q(H) | i ∈ Ag , q[i] = (S, q) �= ı}). Finally,
we may set F ′ = {q ∈ (Q′ ·∪ {ı})Ag | fq |= Occ}.

It is now easy to construct from A′ the above-mentioned ACAT A over
(Σ̃, C) (with set of states Q′×Q) to recognize h(L(A′)) ∩ DAG(Σ̃, C), which
equals L

DAG(eΣ,C)(B). �

The following theorem now follows from Lemmata 5.38 and 5.44.

Theorem 5.45.

ACAT (Σ̃, C) = EMSO(Σ, C)
DAG(eΣ,C)

Both conversions, from automata to formulas and vice versa, are effective.

5.5 The Expressive Equivalence of ACATs and EMSO Logic 71

Proof. It remains to argue that the transformation of an EMSO sentence into
a graph acceptor is effective. This is indeed the case, because converting ϕ
into a graph acceptor is effective: according to Theorem 3.15, a radius R and a
threshold t can be computed so that L

DAG(eΣ,C)(ϕ) is the finite union of �R,t-

equivalence classes, which do not distinguish graphs in which any sphere of
radius R appears more than t− 1 times or equally often. Recall that, in turn,
the equivalence classes of �R,t can be captured by a graph acceptor. �

Remark 5.46. Recall that the ACAT AR, which we constructed in the proof
of Proposition 5.39, relies on instances of spheres. Instances are indispensable
even in the context of MSCs. Consider Fig. 5.13, which depicts an MSC in-
ducing two isomorphic spheres, say of type H. Obviously, α′ is actually not
allowed to carry H forward. As the example shows, however, both α and α′

must be able to carry distinct copies of H as long as they defer to distinct
events of the MSC at hand as sphere centers. This is accomplished by enabling
a state to carry even controversial spheres, which are then equipped with dis-
tinct instances deferring to distinct events as sphere centers. The reader may,
however, find classes of dags where instances of spheres can be omitted.

Remark 5.47. In contrast to the setting of MSO formulas and finite au-
tomata (cf. Chap. 4), the transformation of an EMSO formula into an equiv-
alent ACAT has elementary complexity. Recall that, according to Theo-
rem 3.15, the radius R computed from the length of an EMSO formula
ϕ = ∃X1 . . .∃Xnϕ′ with first-order kernel ϕ′ can be assumed to be 3|ϕ|.
Moreover, set Q to be {0, 1}n. The state space QR of the ACAT AR over

(〈Σ̃, Q〉, C) is composed of subsets of the set of extended spheres that arise

from R-Sph(DAG(〈Σ̃, Q〉, C)). The construction of an ACAT A for ϕ from the
proof of Lemma 5.44 then adds a component to QR that counts the elements
from R-Sph(DAG(〈Σ̃, Q〉, C)) up to a threshold |ϕ| · c where c is the maximal

size of an R-sphere from R-Sph(DAG(〈Σ̃, Q〉, C)). The reader may verify that
the maximal element has no more than R2·|Σ×C| nodes. Clearly, the number
of states of A can be bounded by an elementary function of |ϕ| (and |Σ × C|).

Exercise 5.48. Depending on Σ̃, C (Ag , respectively), and R, provide small
upper bounds for the size of the following sets:

(a) R-Sph(DAG(Σ̃, C)),
(b) R-Sph(MSC(Ag)),

(c) R-Sph(TR+(Σ̃)),

(d) R-Sph(TR−(Σ̃)),
(e) R-Sph(W(Σ)).

We can now exhibit many classes of graphs that are relevant for describing
the behavior of distributed systems where the use of patterns of radius 1 is
sufficient. This important property is shared by the domains of words, traces,
trees, and grids [92].

72 5 Dags and Asynchronous Cellular Automata

α

α
′

Fig. 5.13. Why we need different instances of extended spheres

Theorem 5.49.

GA(Σ, C)
DAG(eΣ,C) = 1-GA(Σ, C)

DAG(eΣ,C)

Proof. Let B be a graph acceptor over (Σ, C). According to Theorems

3.24 and 5.45, there is an ACAT A = (Q, ∆, T, F) over (Σ̃, C) such that
L(A) = L

DAG(eΣ,C)(B). Without loss of generality, we shall assume that, for

any q ∈ F and i ∈ Ag with q[i] ∈ Q, q[i] can be assigned at most to the

Σi-maximal vertex of a (Σ̃, C)-dag (cf. Exercise 5.25). A graph acceptor
B′ of radius 1 with L

DAG(eΣ,C)(B
′) = L(A) is given by (Q, 1, S,Occ) where,

for any transition {((a1, p1), �1), . . . , ((an, pn), �n)} −→ (b, q) ∈ ∆ and any
{((c1, q1), �

′
1), . . . , ((cm, qm), �′m)} ⊆ (Σ×Q)×C with (ci, �

′
i) �= (cj , �

′
j) (i �= j)

and T (b, q) ⊆ {(c1, �
′
1), . . . , (cm, �′m)}, S contains H iff removing from H the

edges that do not touch its center yields {((a1, p1), �1), . . . , ((an, pn), �n)} −→
(b, q) −→ {((c1, q1), �

′
1), . . . , ((cm, qm), �′m)} (with the expected meaning).

Now, given q ∈ Q, let Sq contain those spheres whose sphere center is
labeled with (a, q) for some a, and let, accordingly, Sa with a ∈ Σ contain
those spheres whose sphere center is labeled with (a, q) for some q. Then,

5.5 The Expressive Equivalence of ACATs and EMSO Logic 73

Occ =
∨
q∈F

(∧
i∈Ag, q[i]∈Q

∨
H∈Sq[i]

H ≥ 1 ∧
∧

i∈Ag, q[i]=ı, a∈Σi, H∈Sa

¬ (H ≥ 1)
)

guarantees that a run of B is accepting only if the corresponding run of A is
accepting. �

Note that, in the context of pictures, a corresponding reduction has been
applied to tiling systems [38].

The following theorems will be a consequence of a later result in the frame-
work of MSCs (cf. Theorems 9.10 and 9.12, Lemma 8.26, and Exercises 5.36
and 9.13).

Theorem 5.50. In general, we have

EMSO
DAG(eΣ,C) � MSO

DAG(eΣ,C)

In particular, there are a distributed alphabet Σ̃ and an alphabet C such
that, for some language L ∈ ACAT (Σ̃, C), the complement DAG(Σ̃, C) \L of

L is however not contained in ACAT (Σ̃, C).

Theorem 5.51. In general, ACAT (Σ̃, C) is not closed under complementa-
tion.

Theorem 5.52. In general, we have

det-ACAT (Σ̃, C) � ACAT (Σ̃, C)

Checking automata models for emptiness is a crucial verification task. In
most cases, however, there is no algorithm that takes an ACAT as the input
and decides whether it recognizes the empty language or not. However, we can
restrict to certain subclasses of DAG(Σ̃, C) or to ACAs to gain decidability
of the emptiness problem.

Theorem 5.53.

1. The following problem is decidable:

Input: ACA A over Γ̃ (Ag).
Question: Is LLMSC(Ag)(A) empty?

2. The following problem is decidable:

Input: ACA A over ({a})a∈Σ.
Question: Is LDAG(({a})a∈Σ)(A) empty?

3. In general, the following problem is undecidable:

Input: ACAT A over (Σ̃, C).
Question: Is L

DAG(eΣ,C)(A) empty?

74 5 Dags and Asynchronous Cellular Automata

4. The following problem is undecidable:

Input: ACA A over Γ̃ (Ag).
Question: Is LMSC(Ag)(A) empty?

5. The following problem is undecidable:

Input: ACAT A over Γ̃ (Ag).
Question: Is LLMSC(Ag)(A) empty?

Proof. Statement 1. follows from [1], 2. has been shown by Kuske in [55].
Result 4. will be shown in Chap. 8, whereas statements 3. and 5. are reductions
from 4., which may be verified by the reader. �

5.6 Summary

Some closure and expressiveness properties of ACATs are summarized by
Table 5.2 relative to several classes of (Σ̃, C)-dags. In particular, ACATs run-
ning over the classes of traces and words adopt the nice properties of finite
automata. Things become more complicated when considering classes such as
LMSCs or MSCs. Here, EMSO no longer captures the full expressive power of
MSO logic so that we lose closure under complementation and have to make
do with a weaker deterministic automata model. However, recall that empti-
ness is still decidable concerning ACAs running over LMSCs. Note that some
of the results exhibited in Table 5.2 will be shown in the course of this book.

Table 5.2. Closure and expressiveness properties of asynchronous cellular automata
with types

∪ ∩ · ACA det EMSO MSO Empt.

ACAT
DAG(eΣ,C) � � � � � = � �

ACAT
DAG⇒(eΣ,C) � � � � � = � �

ACAT MSC(Ag) � � � = � = � �

ACAT LMSC(Ag) � � � � � = � �

ACAT
TR+(eΣ) � � � = = = = �

ACAT
TR−(eΣ) � � � = = = = �

ACAT W(Σ) � � � = = = = �

5.7 Bibliographic Notes 75

5.7 Bibliographic Notes

ACAs (without types) were introduced originally by Zielonka in the framework
of Mazurkiewicz traces [97]. They were generalized by Droste, Gastin, and
Kuske to run on posets without autoconcurrency [29]; they also showed that
ACAs are expressively equivalent to EMSO[≤]-logic relative to CROW-posets,
which are subject to an axiom that considers concurrent read and exclusive
owner write, and relative to certain k-posets, which are more general than
CROW-posets but involve a weaker deterministic automata model. Rather
than graphs, Droste et al. consider posets and distinguish two reading modes
of ACAs, R+ and R−, which are also covered in our setting and precisely
correspond to the modes M+ and M− when considering Mazurkiewicz traces.
ACAs running on graphs were studied first in [55]. A way to cope with posets
with autoconcurrency in the realm of regular and recognizable languages is
presented in [33].

Similarly to ACAs, a vertex-marking graph automaton, as introduced in
[84], collects states it has already read and thereupon assigns a new state to
a common successor vertex. Following the idea of communication requests,
an acceptance condition in terms of final states is implicitly given by the
requirement that any event has to conform to the type of its state. Vertex-
marking graph automata also appear as a special case of Thomas’ graph
acceptors with radius 1. The reduction of the radius of graph acceptors for
the domains of words, traces, trees, and grids is addressed in [92].

ACATs were introduced in [14]3, which also provides the technique we
apply for proving that ACATs correspond to EMSO logic relative to any class
of (Σ̃, C)-dags. That technique generalized the one from [17] to characterize
the class of communicating finite-state machines in terms of EMSO logic.

3 There, it was claimed that ACATs have already the full expressiveness if a set
T (a, q) may only contain pairs (b, �) with b independent of a. While this applies to
“reasonable” classes such as M+-traces, M−-traces, and message sequence charts
(in particular, to locally covering classes), the model is actually not sufficient

for arbitrary classes of (eΣ, C)-dags. In fact, to achieve the full expressiveness of
EMSO logic, T (a, q) must be able to range over 2Σ×C .

6

Mazurkiewicz Traces and Asynchronous
Automata

We will now study Mazurkiewicz traces, which have been touched on in the
previous chapter, in more detail. Mazurkiewicz traces are suitable to model
communication where components synchronize by executing certain actions
simultaneously, whereas others are taken autonomously.

6.1 Mazurkiewicz Traces

Recall that Mazurkiewicz traces are classified as M+-traces or M−-traces:

Definition 6.1 (M+-Trace). An M+-trace over Σ̃ is a dag (V, {��}�∈2Ag , λ)

from DAG(Σ̃, 2Ag) such that

• � =
⋃

i∈Ag �i, and

• for any (u, v) ∈ � and � ∈ 2Ag , u �� v iff � = {i ∈ Ag | u �i v}.

Definition 6.2 (M−-Trace). An M−-trace over Σ̃ is a Σ̃-dag (V, �, λ) ∈

DAGH(Σ̃) such that, for any u, v ∈ V , u � v implies λ(u) D eΣ λ(v).

The set of M+-traces over Σ̃ is denoted by TR+(Σ̃), the set of M−-traces

over Σ̃ by TR−(Σ̃). As usual, we often write TR+ (not to be confused with

the product operation) or TR− if Σ̃ can be learned from the context. Observe

that TR+(Σ̃) might be seen as a subset of DAG(Σ̃, 2Ag \ {∅}). Moreover,

TR−(Σ̃) ⊆ DAG⇒(Σ̃), whereas, in general, TR+(Σ̃) ⊆ DAG⇒(Σ̃, 2Ag) does
not hold. Remarkably, if D eΣ = Σ × Σ, then any trace (no matter if M+or

M−) constitutes a totally ordered set and we even have TR−(Σ̃) ⊆W(Σ).
Whenever we leave open whether we deal with an M+- or an M−-trace

over Σ̃, we write (V,≺, λ) to refer to either (V, {��}�∈2Ag , λ) or (V, �, λ),
respectively. Accordingly, ≺′ is actually meant to be either a collection of
relations {�′

�}�∈2Ag or a relation �′.

78 6 Mazurkiewicz Traces and Asynchronous Automata

Example 6.3. Recall that part (a) of Fig. 5.4 on page 48 depicts an M+- trace
over the distributed alphabet ({a, b, d}, {a, b, e}, {a, b}), whereas Fig. 5.4b
shows an M−-trace. Moreover, Fig. 6.1a and Fig. 6.1b depict an M+- and
an M−-trace over ({a, b}, {b, c}, {c}), respectively (say, with Ag = {1, 2, 3}).

Usually, Mazurkiewicz traces are defined as labeled posets (V,≤, λ) [27].

More specifically, we call a Σ-labeled poset (V,≤, λ) a poset-trace over Σ̃ if

• for any u, v ∈ V , if λ(u) D eΣ λ(v), then u ≤ v or v ≤ u, and
• for any u, v ∈ V , u � v implies λ(u) D eΣ λ(v).

But to treat all the structures relevant to this book in a common framework, a
trace is given by its graphical representations. However, there is a one-to-one
correspondence of poset-, M+-, and M−-traces: for any α ∈ {+,−} and any

poset-trace P over Σ̃, there is a unique Mα-trace T = (V,≺, λ) ∈ TRα(Σ̃)
(recall that ≺ is meant to be either {��}�∈2Ag or �) such that (V,≤, λ) = P.
It is therefore justified to call T the Mα-trace of P. Moreover, we can state
that, for any given word w ∈W(Σ), there is exactly one Mα-trace T such that
w ∈ Lin(T). For example, Fig. 6.1 depicts the only M+-trace/M−-trace over
({a, b}, {b, c}, {c}) with linearization cbacbb. Thus, the traces from Fig. 6.1
constitute two different views of one and the same behavior.

{1}

{2}

{1} {2}

{2}

{1, 2}

{3}
b

a c

b

c

b

(a)

b

a c

b

c

b

(b)

Fig. 6.1. An M+-trace and an M−-trace over ({a, b}, {b, c}, {c})

6.2 Trace Languages

For this section, we fix α ∈ {+,−}. For Mα-traces T = (V,≺, λ) and T′ =
(V ′,≺′, λ′) over Σ̃, let T · T′ denote the concatenation of T and T′, which

is the Mα-trace of the poset-trace (V ′′,≤′′, λ′′) over Σ̃ with V ′′ = V ·∪ V ′,
λ′′ = λ ·∪ λ′, and ≤′′= (� ·∪ �′ ·∪ {(u, v) ∈ V × V ′ | (λ(u), λ′(v)) ∈ D eΣ})

∗. It
is an easy task to show that trace concatenation is associative.

6.2 Trace Languages 79

We denote by 1TRα the empty Mα-trace, i.e., either (∅, {∅}�∈2Ag , ∅) or
(∅, ∅, ∅). Then, (TRα, ·,1TRα) is a monoid, called the Mα-trace monoid over

Σ̃, which is mostly identified with TRα. As usual, we assume in most defi-
nitions a trace to be nonempty. However, it will be clear how to incorporate
1TRα , too, which we do silently.

We have already implicitly defined RAT
TRα(eΣ) and REC

TRα(eΣ), the classes

of rational and recognizable Mα-trace languages, respectively. Moreover,
we have introduced the classes MSO(Σ, 2Ag)

TR+(eΣ) and MSO(Σ)
TR−(eΣ)

of MSO(Σ, 2Ag)
TR+(eΣ)-definable M+-trace languages and MSO(Σ)

TR−(eΣ)-

definable M−-trace languages. In particular, the MSO formulas tailored to
M+-traces over Σ̃ are built from the atomic entities

λ(x) = a x �� y x ∈ X x = y

and those tailored to M−-traces over Σ̃ are built from the formulas

λ(x) = a x � y x ∈ X x = y

(where x, y ∈ Var, a ∈ Σ, � ∈ 2Ag , and X ∈ VAR). For their semantics, see
the semantics of MSO(Σ, 2Ag) and MSO(Σ), respectively.

A rational expression β of TRα is called star-connected if iteration occurs
over sets of connected traces only, i.e., for any subexpression γ∗ of β, L(γ) is a
set of connected traces. By c-RAT TRα , we denote the set of rational languages
that arise from star-connected rational expressions of TRα. While, in general,
RECTRα is strictly contained in RAT TRα , we obtain equivalence if we restrict
to star-connected rational expressions.

Theorem 6.4 ([79]).
RECTRα = c-RAT TRα

Let us now clarify what a regular trace language is, whose definition defers
to recognizability of the corresponding set of linearizations.

Definition 6.5 (Regular Trace Language). We call a set L ⊆ TRα(Σ̃)
regular if Lin(L) ∈ RECW(Σ), i.e., if Lin(L) is a regular word language over
Σ.

The class of regular (Mα-)trace languages over Σ̃ is denoted by R
TRα(eΣ) or,

in accordance with our convention, simply by RTRα .
Another characterization of trace languages is based on the concept of

inference, which takes into consideration the distributed nature of a system.
Formally, we require a language to be closed under some inference operator
� eΣ . Namely, given a set L ⊆ TRα(Σ̃) and a trace T ∈ TRα(Σ̃), we write
L � eΣ T if the following holds:

∀i ∈ Ag : ∃T′ ∈ L : T′ � i = T � i

We are now prepared to define what we mean by a product language.

80 6 Mazurkiewicz Traces and Asynchronous Automata

Definition 6.6 (Product Trace Language, cf. [88]). We call a set of
traces L ⊆ TRα a weak product (trace) language if, for any T ∈ TRα, L � eΣ T

implies T ∈ L. A set L ⊆ TRα is called a product (trace) language if it is the
finite union of weak product trace languages.

Let us denote by P0
TRα and PTRα the classes of weak product trace languages

and product trace languages, respectively.

Example 6.7. Suppose Σ̃ = ({a, b}, {b, c}) and let L consist of all those traces

(V,≺, λ) ∈ TRα(Σ̃) such that there are u, v ∈ V with λ(u) = a, λ(v) = c,
u �≤ v, and v �≤ u. Then, though it is a regular trace language, L is not a weak
product language (we will see below that it is not even a product language).
Because if we suppose the trace T1 ∈ L to be given by its projections T1 �

1 = ab and T1 � 2 = cb, while T2 ∈ L is given by T2 � 1 = ba and T2 � 2 = bc,
then we have both {T1, T2} � eΣ abc �∈ L (witnessed by T1 � 1 and T2 � 2) and
{T1, T2} � eΣ cba �∈ L (witnessed by T1 � 2 and T2 � 1), which contradicts the
definition of a weak product language. Thus, L is not contained in P0

TRα(eΣ)
.

Let us bring together the concepts of regularity and product behavior: a
trace language L ⊆ TRα is called a weak regular product language if both
L ∈ RTRα and L ∈ P0

TRα . Moreover, it is said to be a regular product language
if it is the finite union of weak regular product languages. The corresponding
language classes are denoted by RP0

TRα and, respectively, RPTRα .

6.3 Asynchronous Automata

The distributed nature of traces asks for likewise distributed automata models,
which preferably cover some of the classes proposed in the previous section. Let
us start with asynchronous automata, the most general version of automata
for traces that we consider, and let us fix α ∈ {+,−} for the moment.

Definition 6.8 (Asynchronous Automaton [97]). An asynchronous au-

tomaton over Σ̃ is a structure

A = ((Si)i∈Ag , (∆a)a∈Σ , sin , F)

where

• for each i ∈ Ag, Si is a nonempty finite set of (i-)local states,
• for each a ∈ Σ, ∆a ⊆ Sa × Sa is the set of (a-)synchronizing transitions

where

Sa := {s ∈
∏

i∈Ag

(Si ·∪ {∗}) | for any i ∈ Ag , s[i] = ∗ iff i �∈ loc(a)},

• sin ∈
∏

i∈Ag Si is the global initial state, and

6.3 Asynchronous Automata 81

• F ⊆
∏

i∈Ag Si is the set of global final states.

Instead of (s, s′) ∈ ∆a, we also write more clearly s
a
−→ s′. We call A deter-

ministic if, for any a ∈ Σ and any s ∈ Sa, there is at most one s′ ∈ Sa such
that s

a
−→ s′. We will see that, for any Mα-trace T, no matter which mode

α we choose, a deterministic asynchronous automaton will allow at most one
run on T.

Example 6.9. An asynchronous automaton over ({a, b}, {b, c}) that is not
deterministic is illustrated in Fig. 6.2 where b-synchronizing transitions are
joined by dashed lines. Thus, its transitions are those reflected by Table 6.1.

s0

s1

t0

t1

b
a

b
c

b
a

b
c

a c

A1 : A2 :

Fig. 6.2. An asynchronous automaton over ({a, b}, {b, c})

Table 6.1. The transitions of the asynchronous automaton from Fig. 6.2

(s0, ∗)
a

−→ (s0, ∗)

(s0, ∗)
a

−→ (s1, ∗)

(s1, ∗)
a

−→ (s1, ∗)

(s0, t0)
b

−→ (s0, t0)

(s1, t1)
b

−→ (s1, t1)

(∗, t0)
c

−→ (∗, t0)

(∗, t0)
c

−→ (∗, t1)

(∗, t1)
c

−→ (∗, t1)

Let A = ((Si)i∈Ag , (∆a)a∈Σ , sin , F) be an asynchronous automaton and
let T = (V,≺, λ) ∈ TRα be a trace. A mapping ρ : V →

⋃
a∈Σ Sa satisfying

ρ(u) ∈ Sλ(u) for each u ∈ V is called a run of A on T if, for any u ∈ V , we
have

s
λ(u)
−→ ρ(u)

82 6 Mazurkiewicz Traces and Asynchronous Automata

where s ∈ Sλ(u) is determined by

s[i] = source
(sin)i∈Ag

(T,ρ) (u)[i][i]

for any i ∈ loc(λ(u)). We call ρ accepting if f ∈ F with f [i] = final
(sin)i∈Ag

(T,ρ) [i][i]

for any i ∈ Ag . The Mα-language of A, {T ∈ TRα | there is an accepting run
of A on T}, is denoted by Lα(A).

Example 6.10. An accepting run ρ of the asynchronous automaton A from
Fig. 6.2 on some M−-trace T over ({a, b}, {b, c}) is illustrated in part (a) of
Fig. 6.3, which also reflects the sources of a transition (b). One verifies that
the Mα-language of A is the set of traces (V,≺, λ) ∈ TRα(({a, b}, {b, c})) such
that there is u, v ∈ V with λ(u) = a, λ(v) = c, u �≤ v, and v �≤ u. From
Example 6.7, we know that Lα(A) �∈ P0

TRα(({a,b},{b,c})).

b

a c

b

c

(s0, t0)

(s1, ∗) (∗, t1)

(s1, t1)

(∗, t0)

(a) a run ρ on T

(sin [1] = s0, t0)

(s0, ∗) (∗, t0)

(s1, t1)

(∗, sin [2] = t0)

(b) the sources of a transition

Fig. 6.3. An accepting run of an asynchronous automaton

Example 6.11. Consider two processes, 1 and 2. Process 1 has access to
variables x and y, process 2 can write the variables x and z. Thus, 1 and 2 share
a common read and write domain in terms of variable x. We suppose that, for
some n ∈ IN, x, y, and z range over {0, . . . , n} and that they are each initialized
to 0. Both processes can increase the value of x by 1. Moreover, processes 1
and 2 count up their exclusive variables y and z, respectively. Accordingly,
we deal with a distributed alphabet Σ̃ given by Σ1 = {x:=x+1, y:=y+1} and
Σ2 = {x:=x+1, z:=z+1}. We would like to implement a system in which the
value of x can be increased only if the values of y and z coincide. Moreover,
we suppose the system to accept a computation only if x is evaluated to n.
Such a system might be represented by the asynchronous automaton An =
((Si)i∈{1,2}, (∆a)a∈Σ , sin , F) over Σ̃ where

• S1 = {0, . . . , n}{x,y} and S2 = {0, . . . , n}{x,z}, i.e., a local state represents
a variable evaluation mapping a variable to a value not greater than n,

6.3 Asynchronous Automata 83

• sin [i][x] = sin [i][x] = 0 for i = 1, 2 and sin [1][y] = sin [2][z] = 0, and
• F = {s ∈ S1 × S2 | s[1][x] = s[2][x] = n}.

Moreover, the transitions of An shall be given as follows:

• for any s, s′ ∈ S1, (s, ∗)
y:=y+1
−→ (s′, ∗) iff both s[y]+1 = s′[y] and s[x] = s′[x],

• for any s, s′ ∈ S2, (∗, s)
z:=z+1
−→ (∗, s′) iff both s[z]+1 = s′[z] and s[x] = s′[x],

and
• for any s, s′ ∈ Sx:=x+1 = S1 × S2, we have the transition s

x:=x+1
−→ s′ iff

– s[1][y] = s[2][z] = s′[1][y] = s′[2][z] and
– s[1][x] + 1 = s[2][x] + 1 = s′[1][x] = s′[2][x].

Figure 6.4 depicts an M−-trace from L−(A2) (i.e., with n = 2) and its run.

x:=x+1

y:=y+1 z:=z+1

y:=y+1 z:=z+1

x:=x+1

(a) an M−-trace

((x : 1, y : 0), (x : 1, z : 0))

((x : 1, y : 1), ∗) (∗, (x : 1, z : 1))

((x : 1, y : 2), ∗) (∗, (x : 1, z : 2))

((x : 2, y : 2), (x : 2, z : 2))

(b) an accepting run of A2

Fig. 6.4. A computation of A2 from Example 6.11

By AAα(Σ̃) (or simply AAα), we denote {Lα(A) | A is an asynchronous

automaton over Σ̃}. The class det-AAα(Σ̃) is self-explanatory.
We may describe the behavior of an asynchronous automaton A =

((Si)i∈Ag , (∆a)a∈Σ , sin , F) equivalently in a rather operational (and maybe
more intuitive) manner. This view is based on the global transition relation
=⇒A of A, describing its global step-by-step behavior. Accordingly, =⇒A is
a subset of SA × Σ × SA where SA :=

∏
i∈Ag Si is the set of global states of

A. Intuitively, A, being in some global state s, can execute a letter a if, ac-
cording to ∆a, a is enabled in the collection of components from loc(a). More
precisely, we define (s, a, s′) ∈ SA ×Σ × SA to be contained in =⇒A if there

is a transition (t, a, t
′
) ∈ ∆a such that

• for any i ∈ loc(a), we have both s[i] = t[i] and s′[i] = t
′
[i], and

• for any i �∈ loc(a), we have s[i] = s′[i].

Then, A defines in a natural manner a word language Lword(A) ⊆ W(Σ),
which is set to be L((SA, =⇒A, sin , F)), i.e., the language of the finite au-
tomaton (SA, =⇒A, sin , F) over Σ.

84 6 Mazurkiewicz Traces and Asynchronous Automata

Example 6.12. The finite automaton of the asynchronous automaton from
Fig. 6.2 is depicted in Fig. 6.5. Observe that its language L is the one of the
rational expression (a + b + c)∗(ac + ca)(a + b + c)∗ of W({a, b, c}). Moreover,
L is precisely Lin(L(β)) if β is the rational expression (a+b+c)∗ac(a+b+c)∗

of TRα(({a, b}, {b, c})) (no matter if α = + or α = −) where, actually, any
letter stands for an Mα-trace. In fact, we have the following correspondence,
which shows AAα ⊆ RTRα :

Lemma 6.13. For any α ∈ {+,−} and any asynchronous automaton A over

Σ̃, we have Lword (A) = Lin(Lα(A)).

s0, t0

s1, t0 s0, t1

s1, t1

a, b, c

a c

c a

a, b, c

Fig. 6.5. The finite automaton of the asynchronous automaton from Fig. 6.2

Exercise 6.14. Let A be an asynchronous automaton over Σ̃. Show that, for
any w1, w2 ∈W(Σ) and a, b ∈ Σ with a I eΣ b, we have w1abw2 ∈ Lword(A) iff
w1baw2 ∈ Lword(A).

Exercise 6.15. Show Lemma 6.13.

Exercise 6.16. Build the finite automaton of A3 from Example 6.11.

6.4 Asynchronous Automata vs. ACAs and EMSO Logic

When looking for a monadic second-order logic characterizing asynchronous
automata, we profit from the results achieved in Chap. 5, where ACAs were
characterized relative to traces in terms of EMSO logic. There exist easy
effective translations from ACAs to asynchronous automata and vice versa so
that a logical characterization of asynchronous automata follows immediately.

Theorem 6.17.
AA+ = ACATR+

6.4 Asynchronous Automata vs. ACAs and EMSO Logic 85

Proof. “⊇”: Suppose A = (Q, ∆, T, F) is an ACA over (Σ̃, 2Ag). Without
loss of generality, we assume A to be state separated (cf. Exercise 5.23). To
simulate a run ofA by an asynchronous automaton, the latter employs Q ·∪ {ı}
as local state spaces. When reading, say, a b-labeled node u, it moreover
collects the states of the predecessors of u, selects from each state a component
belonging to loc(b), and compares such information with the transitions of A.
So consider the asynchronous automaton A′ = ((Si)i∈Ag , (∆a)a∈Σ , sin , F ′)

over Σ̃, which is given by

• Si = Q ·∪ {ı} for any i ∈ Ag ,

• for b ∈ Σ and s, s′ ∈ Sb, we have s
b
−→ s′ iff there are t = (q, b, q) ∈ ∆,

T = (V, {��}�∈2Ag , λ) ∈ 〈TR+(Σ̃), Q〉, and u ∈ V such that
– transT(u) = t,

– s = source
(ı)i∈Ag

T
(u), and

– for any i ∈ loc(b), we have s′[i] = q,
• sin = (ı)i∈Ag , and
• F ′ = F .

In fact, we easily verify that L+(A′) = L
TR+(eΣ)(A).

“⊆”: Suppose A = ((Si)i∈Ag , (∆a)a∈Σ , sin , F) is an asynchronous automa-

ton over Σ̃. We construct an ACA A′ = (Q, ∆, T, F ′) over (Σ̃, 2Ag) with
L

TR+(eΣ)(A
′) = L+(A), which, in a run, assigns to an a-labeled node a state

from Sa and checks by means of the transitions from ∆ if the assignment
corresponds to an accepting run of A. Accordingly, we specify A′ as follows:

• Q =
⋃

a∈Σ Sa,

• ∆ = {trans(T,ρ)(u) | T = (V, {��}�∈2Ag , λ) ∈ TR+(Σ̃), ρ is a run of A on
T, and u ∈ V },

• T (a, q) = ∅ for any (a, q) ∈ Σ ×Q, and

• F ′ = {final
(ı)i∈Ag

(T,ρ) | T ∈ TR+(Σ̃) and ρ is an accepting run of A on T}. �

As the transformations from the proof of Theorem 6.17 are more or less im-
mediate, we can justifiably state that

Asynchronous automata over Σ̃ are
Asynchronous cellular automata relative to TR+(Σ̃).

Exercise 6.18. Apply the construction from the proof of Theorem 6.17 to
the asynchronous automaton that is depicted in Fig. 6.2.

Exercise 6.19. Argue that

Finite automata over Σ are
Asynchronous cellular automata relative to W(Σ).

86 6 Mazurkiewicz Traces and Asynchronous Automata

Theorem 6.20.
AA− = ACATR−

The proof Theorem 6.20 is more involved and cannot be done immediately.
The problem here is that an ACA over M−-traces might not have immedi-
ate access to the latest event of any agent. There exist, however, tools such
as asynchronous mappings that, in particular, allow us to transform an asyn-
chronous automaton into an equivalent ACA relative to M−-traces [24, 27, 29].
With Theorem 5.45 and Corollary 5.32, we obtain the following:

Corollary 6.21.

(a) AA+(Σ̃) = EMSO(Σ, 2Ag)
TR+(eΣ)

(b) AA−(Σ̃) = EMSO(Σ)
TR−(eΣ)

Observe that, as the graph of an M−-trace is a Hasse diagram, we have
EMSO(Σ)

TR−(eΣ) = EMSO(Σ)[�]
TR−(eΣ).

We study the expressiveness of asynchronous automata further on and,
for the rest of this section, let α ∈ {+,−} be arbitrary. The following is the
celebrated theorem of Zielonka and bridges the gap between asynchronous
automata and the algebraically motivated notions of recognizability and reg-
ularity. It states that one can (effectively) synthesize a distributed system in
terms of an asynchronous automaton given a regular set of words that arises
from a trace language.

Theorem 6.22 (Zielonka [97]).

RECTRα = RTRα = AAα = det-AAα

Theorem 4.10, which states that any regular word language can be defined
in MSO logic and, vice versa, any MSO sentence over words constitutes a
regular word language, carries over to the setting of traces, no matter whether
we deal with their graph structures or the underlying partial-order relation.

Theorem 6.23 (cf. [31, 90]).

EMSOTRα = MSOTRα = AAα =MSO[≤]TRα = EMSO[≤]TRα

Let us compare asynchronous automata with graph acceptors relative to
traces.

Corollary 6.24.
1-GATRα = GATRα = AAα

Proof. Analogously to the word case, the second equality follows from Theo-
rem 3.24 and Corollary 6.21. Moreover, one can easily reduce a graph acceptor
of radius R to a graph acceptor of radius 1 involving a blow-up in the number
of states [92]. �

6.5 Product Automata 87

6.5 Product Automata

Let us turn to (weak) regular product languages and try to find a suitable
automata model, which is weaker than the asynchronous one and generates a
regular product language in a natural manner. Synchronizing transitions turn
out to be essential to recognizing the language of the automaton from Fig. 6.2
on page 81. Certain product automata lack such a possibility and operate more
autonomously than asynchronous automata do. Though product automata
are similar to asynchronous automata, they are strictly less expressive. Let us
again fix α ∈ {+,−}.

Definition 6.25 (Product Automaton). A product automaton over Σ̃ is
a structure A = ((Ai)i∈Ag , sin , F) such that

• for each i ∈ Ag, Ai is a pair (Si, ∆i) where
– Si is a nonempty finite set of (i-)local states, and
– ∆i ⊆ Si ×Σi × Si is the set of (i-)local transitions,

• sin ∈
∏

i∈Ag Si is the global initial state, and
• F ⊆

∏
i∈Ag Si is the set of global final states.

A simple product automaton over ({a, b}, {b, c}) (say, Ag = {1, 2}) is il-
lustrated in Fig. 6.6 where global final states are depicted by dashed lines.

s0

s1

s2

s3

t0

t1

t2

t3

a

b

b c

b

b

A1 : A2 :

Fig. 6.6. A product automaton over ({a, b}, {b, c})

The behavior of a product automaton is quite similar to that of an asyn-
chronous automaton but more autonomous. So let A = ((Ai)i∈Ag , s

in , F),

Ai = (Si, ∆i), be a product automaton over Σ̃ (again, set Sa to be {s ∈∏
i∈Ag(Si ·∪ {∗}) | for any i ∈ Ag , s[i] = ∗ iff i �∈ loc(a)}) and suppose

T = (V,≺, λ) to be an Mα-trace over Σ̃. A run of A on T is a mapping
ρ : V →

⋃
a∈Σ Sa with ρ(u) ∈ Sλ(u) (for each u ∈ V) such that, for any u ∈ V

and any i ∈ loc(λ(u)),

88 6 Mazurkiewicz Traces and Asynchronous Automata

(source
(sin)i∈Ag

(T,ρ) (u)[i][i], λ(u), ρ(u)[i]) ∈ ∆i

The acceptance condition carries over from asynchronous automata. The Mα-
language of A, {T ∈ TRα | there is an accepting run of A on T}, is denoted
by Lα(A). For example, the Mα-language of the product automaton from
Fig. 6.6 is the one of the rational expression b + acb of TRα(({a, b}, {b, c})).

By PAα(Σ̃) (or just PAα), we moreover denote the set of Mα-trace languages

that is determined by the class of product automata over Σ̃.
As already done for asynchronous automata, we may describe the behavior

of a product automaton A = ((Ai)i∈Ag , s
in , F), Ai = (Si, ∆i), by means of

a global transition relation =⇒A. Again, =⇒A is a subset of SA × Σ × SA
where SA :=

∏
i∈Ag Si is the set of global states of A. Moreover, (s, a, s′) ∈

SA ×Σ × SA is contained in =⇒A if

• for any i ∈ loc(a), we have (s[i], a, s′[i]) ∈ ∆i, and
• for any i �∈ loc(a), we have s[i] = s′[i].

Canonically, A determines a word language Lword (A) ⊆ W(Σ), which is
the language of the finite automaton (SA, =⇒A, sin , F). Once we have shown
Lemma 6.13, the following lemma is an easy consequence thereof.

Lemma 6.26. For any α ∈ {+,−} and any product automaton A over Σ̃,
we have Lword(A) = Lin(Lα(A)).

The finite automaton of the product automatonA from Fig. 6.6 is depicted
in Fig. 6.7. Its language is the finite set {b, acb, cab}, which, in fact, is precisely
Lin(Lα(A)).

s0, t0

s1, t0 s0, t1

s1, t1

s3, t3

s2, t2

s2, t3 s3, t2

a c

c a

b

b

b b

Fig. 6.7. The finite automaton of the product automaton from Fig. 6.6

Executing an action a, an asynchronous automaton has a global view on
the current state of each agent involved in a. It can therefore globally decide
to take a transition. In contrast, a product automaton has a local view on the
collection of agents involved in a, which, in general, is strictly less expressive.

6.6 Summary 89

Lemma 6.27. In general,
PAα � AAα

Proof. Suppose Σ̃ = ({a, b}, {b, c}) (say, Ag = {1, 2}) and suppose that L

consists of those traces (V,≺, λ) ∈ TRα(Σ̃) such that there is u, v ∈ V with
λ(u) = a, λ(v) = c, u �≤ v, and v �≤ u. Recall that L is recognized by
the asynchronous automaton illustrated in Fig. 6.2 on page 81. Now suppose
there is a product automaton A = ((Ai)i∈Ag , s

in , F) over Σ̃ with Lα(A) = L.

For m, n ∈ IN, consider the trace T(m, n) ∈ TRα(Σ̃), which is given by its
linearization bmacbn. Let us adopt the view of the global transition relation of
A. If m and n are sufficiently large, A1, in a successful run of A on T(m, n),
goes through a cycle, say, of length k (≥ 1), to read the first m b’s of the word
bmabn. Similarly, A2, in the same run, goes through a cycle, say of length
l (≥ 1), to read the second n b’s of bmcbn. But then, we can easily construct

an accepting run of A on bmcbk·labn ∈ Lin(TRα(Σ̃) \ L), which contradicts
the premise. �

However, in Sect. 6.2, we identified a class of languages that precisely corre-
sponds to PAα.

Theorem 6.28 ([88]).
RPTRα = PAα

Note that RP0
TRα corresponds to the special form of product automata where

the set of global final states is the cartesian product of local state spaces rather
than a subset of the set of global states so that, actually, we deal with a local
acceptance condition. Such correspondence will be studied in more detail in
the framework of MSCs.

Exercise 6.29.

(a) Show that RP0
TRα corresponds to the class of product automata where

the set of global final states is a cartesian product.
(b) Show Theorem 6.28.

6.6 Summary

Table 6.2 exhibits important closure properties of asynchronous and product
automata, which do not depend on whether the automata run on M+-traces or
M−-traces (or even poset traces). Consequently, the concrete representation of
a trace and the power of related atomic formulas does not influence the power
of automata and logics. Missing proofs concerning the results for product
automata can be found in [88]. Note that the definition of a deterministic
product automaton has been omitted. It is, however, straightforward to call
a product automaton deterministic whose local (finite) automata are.

90 6 Mazurkiewicz Traces and Asynchronous Automata

Table 6.2. Closure and expressiveness properties of asynchronous automata

∪ ∩ · det EMSO MSO Empt.

AA+
� � � = = = �

AA−

� � � = = = �

PA+
� � � = � � �

PA−

� � � = � � �

6.7 Bibliographic Notes

A comprehensive overview of the theory of Mazurkiewicz traces and related
automata models is provided by [27], which covers many important research
lines of trace theory, including an algebraic view thereof. Recognizability of
trace languages is the subject of [79]. In [96], recognizability and definability
in terms of MSO logic are considered in terms of traces, MSCs, graphs, and
infinite structures. Comparisons of the models of ACAs and asynchronous
automata relative to traces can be found in [28] and [82]. Product automata
and product trace languages are studied in [88].

7

Message Sequence Charts

As discussed in detail in Chap. 5, ACATs are capable of modeling systems
of several components that communicate via message exchange through fifo
channels. Resuming that study, we now model those systems and their chan-
nels explicitly. Afterwards, an embedding of message-passing systems into
ACATs allows the transfer of several results into this more specific setting.
Remember that the behavior of those systems can be described by a collection
of message sequence charts (MSCs). In the following, let us recall some basic
definitions that have already been settled in Example 5.12. However, defin-
ing MSCs, we will now come from the more general notion of partial MSCs,
which, in contrast to MSCs, admit events to be unmatched.

7.1 Message Sequence Charts

As usual, let Ag be a finite set of at least two agents. Towards defining a
distributed alphabet that is tailored to channel systems, we first let

Γ s
i (Ag) := {i!j | j ∈ Ag \ {i}}

Γ r
i (Ag) := {i?j | j ∈ Ag \ {i}}

denote the sets of send and, respectively, receive actions that are available to
agent i ∈ Ag . Accordingly, Γi(Ag) := Γ s

i (Ag) ∪ Γ r
i (Ag) contains any action

that i may execute, Γ s(Ag) :=
⋃

i∈Ag Γ s
i (Ag) is the set of send, Γ r(Ag) :=⋃

i∈Ag Γ r
i (Ag) is the set of receive, and Γ (Ag) := Γ s(Ag) ∪ Γ r(Ag) is the set

of all the actions. Here, the symbols i!j and j?i are to be read as “i sends
a message to j” and “j receives a message from i”, respectively. They are
related in the sense that they will label communicating events of an MSC,
which are joined by a message arrow in their graphical representation. We
therefore set Com(Ag) := {(i!j, j?i) | (i, j) ∈ Ch(Ag)}. Recall that an action
iθj (θ ∈ {!, ?}) is performed by agent i, which is indicated by Ag(iθj) = i.

92 7 Message Sequence Charts

In a natural manner, a message-passing system over Ag is based on the
distributed alphabet Γ̃ (Ag) := (Γi(Ag))i∈Ag . Henceforth, we mostly take the
liberty of omitting the reference to Ag and just write Γ s, Γ r, Γ , Com, and
Γ̃ , for example.

MSCs will be defined stepwise, starting with partial MSCs, where some
events may lack a suitable communication partner. The latter view is con-
cretized towards lossy MSCs, which allow at most unmatched send events,
whereas, finally, a basic MSC describes complete behavior without any open
events.

Definition 7.1 (Partial Message Sequence Chart). A partial message

sequence chart (over Ag) is a Γ̃ -dag (V, �, λ) such that

• for any i ∈ Ag, �i = �i, i.e., �i is the covering relation of ≤i, and
• for any (u, v) ∈ �c, (λ(u), λ(v)) ∈ Com.

Unlike the general case of dags over distributed alphabets, the first condi-
tion from Definition 7.1 guarantees that the class of partial MSCs is locally
covering. Moreover, the definition of a Γ̃ -dag makes sure that completed mes-
sage transfers in a partial MSC, which correspond to an edge whose nodes are
labeled with communicating actions, are processed along a fifo architecture.
However, there might still be unmatched events. So suppose M = (V, �, λ) is a
partial MSC over Ag . We identify events from V that either have no communi-
cation partner yet or just lack a link to an existing partner and let Vum denote
the set {u ∈ V | there is no v ∈ V such that u �c v or v �c u} of unmatched
events of M. Given u ∈ V , Ag(u) will subsequently serve as a shorthand for
Ag(λ(u)). Moreover, we may write Ag(M) instead of {Ag(u) | u ∈ V }.

Definition 7.2 (Lossy Message Sequence Chart). A lossy message se-
quence chart is a partial MSC (V, �, λ) such that, for any u ∈ Vum, λ(u) ∈ Γ s.

In other words, a lossy MSC has no unmatched receive events. In an MSC,
finally, any event is part of a full message exchange:

Definition 7.3 (Message Sequence Chart). A message sequence chart is
a partial MSC (V, �, λ) such that we have Vum = ∅.

Example 7.4. An MSC (V, �, λ) over {1, 2, 3} is depicted in Fig. 7.1b. How-
ever, to illustrate an MSC, we mostly represent it by a diagram such as shown
in Fig. 7.1a, which is more intuitive and provides enough information to infer
the corresponding graph. This example shows that it would be too restrictive
if we confined ourselves to Hasse diagrams, i.e., to graphs from DAGH(Γ̃), as
the edge representing the second message from agent 1 to agent 2 is already
implicitly present. Observe that we have V1 = {u1, u2, u3}, u1 �1 u2 �1 u3,
u2 �c v4 and u2 �(1,2) v4, w3 �c v3 and w3 �(3,2) v3, v1 ≤2 v4, u3 ≤ v3,
u3 � w2, and u2 �� v4.

7.1 Message Sequence Charts 93

Example 7.5. Figure 7.2 shows a partial MSC that is not lossy (a), a lossy
MSC that is not an MSC (b), and an MSC (c). If, in general, we deal with
partial MSCs, we may indicate unmatched events as illustrated by Fig. 7.3
reflecting the graphs from Fig. 7.2. Hereby, the labeling of an unmatched event
indicates the desired communication partner.

1 2 3

(a)

u1

u2

u3

v1

v2

v4

v3

w1

w2

w3

1!2

1!2

1!3

2?1

2!3

2?1

2?3

3?2

3?1

3!2

(b)

Fig. 7.1. Two different views of an MSC

The set of partial MSCs over Ag is denoted by PMSC(Ag), the set of lossy
MSCs by LMSC(Ag), and the set of MSCs by MSC(Ag). The members of
MSC(Ag) are often called basic MSCs. An MSC language is a set of basic
MSCs. When Ag is clear from the context, a corresponding reference may be
omitted. Obviously, we have MSC ⊆ LMSC ⊆ PMSC ⊆ DAG⇒(Γ̃).

To be able to apply the theory of graph acceptors and, in particular,
Theorem 3.24, it is important to observe that MSC, LMSC, and PMSC have
bounded degree. More precisely, their degree is bounded by 3. To verify this,
observe that any event of a partial MSC has at most one communication
partner as well as at most two direct neighbors on its process line.

Given a partial MSC M = (V, �, λ) ∈ PMSC, we might argue that some
pairs of unmatched events of M can be combined towards a complete message.
Following this idea, we define a relation �̂c ⊆ V × V , which accordingly
relates events from Vum. Intuitively, they are queued into a fifo channel as
far as possible. For u, v ∈ V , we formally write u �̂c v if {u, v} ⊆ Vum,
(λ(u), λ(v)) ∈ Com, and |M ⇓ u|λ(u) = |M ⇓ v|λ(v). If (V, � ∪ �̂c, λ) is
a partial MSC, then it can be understood as the adjustment of M along
the fifo architecture. In that case, we say that M represents (V, � ∪ �̂c, λ),
written M � (V, � ∪ �̂c, λ). For example, the partial MSC from Fig. 7.3a
represents the one from Fig. 7.3b. Though we consider partial MSCs with
possibly unmatched events, a system description or an implementation of a
system is often designed for complete message transfer, i.e., partial MSCs will
be combined here towards basic MSCs.

94 7 Message Sequence Charts

1!2

1?2

1!2

2!1

2?1

(a)

1!2

1?2

1!2

2!1

2?1

(b)

1!2

1?2

1!2

2!1

2?1

2?1

(c)

Fig. 7.2. Three sample partial MSCs

1 2

2

1

2

(a)

1 2

2

(b)

1 2

(c)

Fig. 7.3. The visual representation of partial MSCs

Observe that, for a partial MSC M = (V, �, λ) ∈ PMSC and an agent
i ∈ Ag , the projection M � i of M onto i is identical to (Vi, �i, λ|Vi

) ∈ W(Γi).
Moreover, an MSC M ∈ MSC is uniquely determined by the collection
(M � i)i∈Ag of its projections, which does not apply to partial MSCs: MSC is
projective whereas both LMSC and PMSC are not.

Given two partial MSCs M = (V, �, λ) and M′ = (V ′, �′, λ′), let M ·
M′ := (V ′′, �′′, λ′′) be the (asynchronous) concatenation of M and M′

where V ′′ = V ·∪ V ′, λ′′ = λ ·∪ λ′, and �′′ is the union of �, �′, and⋃
i∈Ag{(u, u′) ∈ Vi× V ′

i | u = last(M� i) and u′ = first(M′ � i)}. The attribute
asynchronous is assigned because, after having concatenated two partial MSCs
and considering their operational behavior in terms of the associated partial
order, agents might decide independently of one another when to move from
the first to the second factor. Observe that asynchronous concatenation is as-
sociative. As with M−-traces, we deal with (∅, ∅, ∅) as the unit MSC and denote
it by 1MSC. We obtain the monoids (PMSC, ·,1MSC) and (MSC, ·,1MSC), which
are identified with PMSC and MSC, respectively. Some definitions (such as
the one of communicating finite-state machines from Chap. 8) are for sim-
plicity rather designed for nonempty MSCs. We will, however, include 1MSC

implicitly and it will always be clear how to cope with 1MSC as well. Note
that (LMSC, ·,1MSC) is a monoid, too, which, however, is not needed in the
following.

7.2 Universal and Existential Bounds 95

Remark 7.6. Both PMSC and MSC are not finitely generated.

For a partial MSC M = (V, �, λ) ∈ PMSC over Ag , we define the com-
munication graph of M, denoted by CG(M), to be the pair (Ag(M),Arcs),
Arcs ⊆ Ag(M)×Ag(M), where, for any i, j ∈ Ag(M), (i, j) ∈ Arcs if there
are u, v ∈ V such that λ(u) = i!j and λ(v) = j?i [35]. Thus, CG(M) reflects
the communication structure of M. Remarkably, if M is a basic MSC, then M

is connected iff CG(M) is connected, which does not hold for partial MSCs
in general. Figure 7.4 shows a connected MSC and its communication graph.
Note that a basic MSC over at most three processes is always connected,
which does not apply to partial MSCs.

1 2 3 4

(a)

1 2

3

(b)

Fig. 7.4. A connected MSC and its communication graph

7.2 Universal and Existential Bounds

An important subclass of MSC is identified when we focus on bounded MSCs,
which cope with systems whose channel capacity is restricted. Those systems
turn out to have simpler, more liberal logical characterizations than their un-
restricted counterparts and, furthermore, enjoy some nice algorithmic prop-
erties. In general, we distinguish two kinds of boundedness. If we require any
execution of an MSC (by which we mean a linearization) to correspond to a
fixed channel capacity, we will speak of a universally bounded MSC [45]. If,
in contrast, we require at least one linearization to fit into the channel restric-
tion, we call an MSC existentially bounded [62]. While regularity gives rise to
universally bounded MSC languages, an existential bound suffices to ensure
decidability of some model-checking problems such as the problem of whether
an MSO formula satisfies a given high-level MSC (see Sect. 7.3) [35, 63, 64].

Let us become more formal and let B ≥ 1. As we define boundedness in
terms of linearizations of MSCs, we first call a word w ∈ W(Γ) B-bounded
if, for any prefix u of w and any (i, j) ∈ Ch, |u|i!j − |u|j?i ≤ B. An MSC
M ∈MSC is called

96 7 Message Sequence Charts

1 2

(a)

1 2

(b)

Fig. 7.5. A ∀2-bounded and an ∃1-bounded MSC

• universally B-bounded (∀B-bounded) if, for any w ∈ Lin(M), w is B-
bounded and

• existentially B-bounded (∃B-bounded) if there is at least one w ∈ Lin(M)
such that w is B-bounded.

In other words, universal boundedness is safe in the sense that any possi-
ble execution sequence does not claim more memory than some given upper
bound, whereas existential boundedness allows an MSC to be executed even
if this does not apply to each of its linear extensions.

Example 7.7. The MSC depicted in part (a) of Fig. 7.5 is ∀2-bounded be-
cause, at any time of execution, there are at most two messages in each chan-
nel: consider agent 1, which sends a message to agent 2, then receives some
message and, again, sends a message to its opponent. At that time, there
might be two messages in channel (1, 2). However, before agent 1 is able to
complete its agent line by sending a third message, it has to receive a second
message from agent 2, which, in turn, is required to take at least one mes-
sage from (1, 2). As agent 1 can potentially send its second message without
awaiting collection of the first one by agent 2, the MSC is not ∀1-bounded,
though it is ∃1-bounded. The MSC depicted in Fig. 7.5b is ∃1-bounded: its
linearization ((1!2)(2?1))4 makes use of only one location in channel (1, 2).
Moreover, it is ∀B-bounded iff B ≥ 4.

Given some natural number B ≥ 1, the set of ∀B-/∃B-bounded MSCs
is denoted by MSC∀B/MSC∃B, respectively. An MSC language L ⊆ MSC
will be called ∀B-/∃B-bounded if, for any M ∈ L, M is ∀B-/∃B-bounded.
Moreover, we call L universally/existentially bounded (∀-/∃-bounded) if it is
∀B-/∃B-bounded for some B.

7.3 High-Level Message Sequence Charts

Usually, a system designer wants a specification or an implementation to com-
prise many scenarios, which gives rise to an MSC language. In the following

7.3 High-Level Message Sequence Charts 97

sections, we recall several rather algebraic characterizations of MSC languages,
starting with high-level MSCs, a high-level construct, whose standard descrip-
tion of the norm Z.120 allows nondeterministic choice, concatenation, and it-
eration of MSCs for conveniently specifying possibly infinite sets of MSCs.
Then, regular languages characterize sets of MSCs that, in some sense, are
realizable and whose definition, though algebraically established, rather stems
from a state-based implementation point of view. Other formalisms introduced
in the rest of this chapter are product languages, which are closed under some
independence operator an implementation might be based on, and EMSO-
definable MSC languages, which will turn out to be the logical counterpart of
our most general finite model of an implementation. Let us focus on high-level
descriptions in this section, which are needed to combine MSCs and describe
possibly infinitely many scenarios in a compact manner. In high-level MSCs,
the central combination operator will be concatenation. Recall that we focus
on asynchronous or weak concatenation, i.e., the only restriction on the order
of events in the product of MSCs M and M′ is that, for any process line,
events of M precede events of M′, while other events remain unordered unless
they are otherwise causally ordered.

When introducing high-level descriptions, we come from their most gen-
eral case. In our framework, partial MSCs correspond to what is commonly
known as compositionality, which was introduced in [40]. Compositional high-
level constructions allow for the modeling of more complex systems than their
simpler variant, particularly featuring MSC languages that are not finitely
generated. Basically, a high-level compositional MSC is a rational expression
of PMSC whose language, though consisting of partial MSCs, can be under-
stood as a basic MSC language if previously unmatched events are combined
according to a fifo architecture.

To make our life and upcoming constructions a bit easier, we replace in
REXPMSC and REXMSC the standard operation α∗ with α+ (L(α+) is still
defined to be L(α)+) and consider α∗ to serve as an abbreviation of α++1MSC.
Thus, a rational expression of MSC or PMSC comes up with the plus operation
α+ instead of α∗, which is not a restriction but circumvents some technical
difficulties that come along with 1MSC.

Definition 7.8 (High-Level Compositional MSC, cf. [40]). A high-
level compositional MSC (HcMSC) (over Ag) is a rational expression of
PMSC(Ag).

For readability, we henceforth omit any reference to Ag in this section.
But note that the following definitions still depend on Ag .

In contrast to [40] and rather following [73], our approach to high-level
(compositional) MSCs is algebraically motivated and, based on the idea of
prime MSCs, allows us to relate the corresponding MSC languages to trace
theory. Moreover, we follow the approach adopted in [3, 5, 45, 63, 74], where
high-level MSCs are flattened into message sequence graphs.

98 7 Message Sequence Charts

The MSC language of an HcMSC H, which we denote by L(H), is defined
to be the set {M′ ∈ MSC | M � M′ for some M ∈ L(H)} (recall that,
otherwise, L(H) is primarily a set of partial MSCs). If we say that HcMSCs
H and H′ are equivalent, we actually mean L(H) = L(H′) in the following.

An HcMSC might be represented as a (labeled) graph (Q, ∆, Qin , F, µ)
where Q is the nonempty finite set of states, ∆ ⊆ Q×Q is the step relation,
Qin ⊆ Q is the nonempty set of initial states, F ⊆ Q is the set of final
states, and µ is a mapping Q → PMSC. An execution of H is henceforth a
sequence q0 . . . qn ∈ Q+ of states such that q0 ∈ Qin and (qi, qi+1) ∈ ∆ for any
i ∈ {0, . . . , n − 1}. It is called accepting if, moreover, qn ∈ F . An execution
ρ = q0 . . . qn of H gives rise to the partial MSC M(ρ) := µ(q0) · . . . · µ(qn).
Then, the language L(H) can be defined to be {M(ρ) | ρ is an accepting
execution of H}. Observe that this view of an HcMSC is equivalent to the one
proposed before. To see this, one needs to realize that a rational expression
and a structure (Q, ∆, Qin , F, µ) both exhibit regular languages over finite
alphabets, which arise from the partial MSCs that occur in the expression
and in µ(Q), respectively. Given a rational expression H of PMSC, the graph
of H, denoted by Graph(H), is inductively defined as follows (suppose α and β
to be HcMSCs with graphs (Qα, ∆α, Qin

α , Fα, µα) and (Qβ, ∆β , Qin
β , Fβ, µβ)):

• Graph(∅) := ({∗}, ∅, {∗}, ∅, ∗ �→ 1MSC),
• Graph(M) := ({∗}, ∅, {∗}, {∗}, ∗ �→M),
• Graph(α + β) := (Qα ·∪ Qβ , ∆α ·∪ ∆β , Qin

α ·∪ Qin
β , Fα ·∪ Fβ, µα ·∪ µβ),

• Graph(α · β) := (Qα ·∪ Qβ , ∆α ·∪ ∆β ·∪ (Fα ×Qin
β), Qin

α , Fβ , µα ·∪ µβ),

• Graph(α+) := (Qα, ∆α ·∪ (Fα ×Qin
α), Qin

α , Fα, µα).

In fact, we have L(H) = L(Graph(H)) for any HcMSC H.

Definition 7.9 (Safe and Left-Closed HcMSC). We call an HcMSC H
safe if, for any M ∈ L(H), there is some basic MSC M′ ∈ MSC such that
M � M′. We call it left-closed if, for any execution ρ of Graph(H), there is
some lossy MSC M′ ∈ LMSC such that M(ρ) �M′.

Lemma 7.10 ([35]). For any safe HcMSC H, L(H) is ∃-bounded.

Exercise 7.11. Show that any left-closed HcMSC is equivalent to some
HcMSC that is both safe and left-closed.

Many interesting properties are undecidable for sets of MSCs formalized
by high-level descriptions. Inspired by the notion of a star-connected rational
expression in the theory of Mazurkiewicz traces, the more restrictive but useful
notion of global cooperativity in high-level MSCs was introduced independently
in [37] and [73] and extended to HcMSCs in [35].

Definition 7.12 (Globally Cooperative HcMSC). We call an HcMSC H
globally cooperative (gc-HcMSC) if, for any subexpression β+ of H and any
M ∈ L(β), M is connected.

7.3 High-Level Message Sequence Charts 99

1 2

2

A

1 2 3

B

1 2

1

C

1 2

2

D

1 2 3

E

1 2

1

F

1 2

G

1 2

H

3 4

I

Fig. 7.6. The building blocks of HcMSCs

Thus, in a gc-HcMSC, iteration occurs over sets of connected partial MSCs
only. Note that, actually, [35] makes use of a different notion of global cooper-
ativity, which is more general in the context of safe HcMSCs and requires that
iteration occurs over sets of partial MSCs with a connected communication
graph. However, in the special case of HMSCs, which are defined as follows,
their condition captures exactly the same expressions as our notion.

Definition 7.13 (High-Level Message Sequence Chart). A high-level
message sequence chart (HMSC) is an HcMSC that is built from MSCs only,
i.e., it is a rational expression of MSC.

An HMSC is trivially safe and left-closed. Moreover, the MSC language
L(H) = L(H) of some HMSC H is finitely generated.

Example 7.14. Consider the partial MSCs from Fig. 7.6 and the following
HcMSCs, whose graphs are illustrated in Fig. 7.7.

• The gc-HcMSC Ha = A+ · B · C+, whose basic MSC language features,
among others, the basic MSC Ma from Fig. 7.8, is neither safe nor left-
closed.

• The gc-HcMSC Hb = A+ ·F+ ·D+ ·C+ is also neither safe nor left-closed.
It defines the basic MSC language whose basic MSCs look like Mb from
Fig. 7.8.

100 7 Message Sequence Charts

• Hc = C ·E+ ·A is a safe, though not left-closed, gc-HcMSC, which defines
the set of basic MSCs in the style of Mc from Fig. 7.8. Note that there is
no left-closed HcMSC equivalent to Hc.

• Hd = A ·B+ · C is a gc-HcMSC that is both safe and left-closed.
• Finally, He = G · ((H · G) + (I · G))+ is an HMSC, as it is composed of

MSCs only. However, He is not globally cooperative and has no equivalent
gc-HcMSC counterpart either.

Observe that Ha and Hb are both not equivalent to some safe HcMSC. In
particular, HMSCs are in general not capable of defining the MSC language
of the HcMSC Ha from the above example, which defines MSCs in the style of
Ma from Fig. 7.8. But even if Ha is not safe, it is a natural specification, gen-
erating a quite simple MSC language. Having in mindHa, the system designer
is usually unconcerned about the channel architecture and does not care if,
in every run of its specification, the number of sends equals the number of re-
ceives. In fact, this is the job of the channel architecture of an implementation,
which justifies that we consider HcMSCs in their most general form.

Let us define some language classes associated with HcMSCs and their
restrictions. We set

HcMSC := {L(H) | H is an HcMSC}
gc-HcMSC := {L(H) | H is a gc-HcMSC}

safe-gc-HcMSC := {L(H) | H is a safe gc-HcMSC H}
left-closed-gc-HcMSC := {L(H) | H is a left-closed gc-HcMSC H}

HMSC := {L(H) | H is an HMSC}
gc-HMSC := {L(H) | H is a gc-HMSC}

We obtain HMSC = RAT MSC, as any HMSC is a rational expression of MSC
and vice versa.

Lemma 7.15. The classes of HcMSCs form the hierarchy depicted in Fig. 7.9.
The hierarchy is strict.

Proof. Inclusions follow directly from the definitions. Moreover, strictness is
witnessed by the HcMSCs from Example 7.14, which are assigned in Fig. 7.9
to a class they belong to so that there is no equivalent counterpart in a lower
class, respectively. �

Note that none of the above classes will later ensure that a system is
implementable without deadlocks. Consider, for example, the simple gc-HMSC
G + H (cf. Fig. 7.6) generating {G, H} and suppose we are looking for a
distributed implementation thereof. Unless we assume the implementation to
have some global information at the beginning of a run so that agents 1 and 2
could agree on either G or H, both 1 and 2 may try to send a message to the
other agent and thereupon switch to idle mode so that none of the messages
is ever received.

7.3 High-Level Message Sequence Charts 101

1 2 3

2

1 2 3

1 2 3

1

Graph(Ha)

1 2 3

1

1 2 3

1 2 3

2

Graph(Hc)

1 2 3

2

1 2 3

1 2 3

1

Graph(Hd)

1 2

2

1 2

1

1 2

2

1 2

1

Graph(Hb)

1 2

1 2 3 4

1 2 1 2

Graph(He)

Fig. 7.7. HcMSCs as graphs

102 7 Message Sequence Charts

1 2 3

Ma

1 2

Mb

1 2 3

Mc

Fig. 7.8. The basic MSC languages of some gc-HcMSCs

HcMSC (He)
↑

gc-HcMSC (Ha, Hb)
↑

safe-gc-HcMSC (Hc)
↑

left-closed-gc-HcMSC (Hd)
↑

gc-HMSC

Fig. 7.9. The hierarchy of HcMSCs

Thus, the specification often admits a global view of the system, whereas a
locally controlled implementation lacks some global information so that incon-
sistent local decisions might cause an undesired behavior (e.g., a deadlock).
The class of local-choice HcMSCs rules out such misunderstanding and makes
sure that, at any time of execution, there is a leader agent that decides on the
further system behavior.

Definition 7.16 (Local-Choice HcMSC). We call an HcMSC H with
Graph(H) = (Q, ∆, Qin , F, µ) local-choice if

• H is safe,
• there is an agent i ∈ Ag such that, for any q ∈ Qin (set (V, �, λ) to be

µ(q)), there is a node u ∈ Vi that is minimal in (V,≤), and
• for any (q, q′) ∈ ∆ (set (V, �, λ) to be µ(q′)), there exist an agent i ∈

Ag(µ(q)) and an event u ∈ Vi such that u is minimal in (V,≤).

The corresponding class of MSC languages will be denoted by lc-HcMSC.

7.4 Message Contents and Non-Fifo Behavior 103

According to that definition, G+H and (G+H)+ are both not local-choice
whereas G · (G + H)+ is (where, again, G and H are taken from Fig. 7.6).
In the latter HMSC, agent 1 becomes the first leader in an implementation
thereof and may send a message to inform agent 2 what to do next, i.e., if
it should send or receive a message. In further steps, the sender respectively
decides whether to realize G or H. To get an impression of what an automata
implementation of the local-choice HMSC G + G · (G + H)+ looks like, the
reader may consult Fig. 8.5 on page 123. Observe that the only local-choice
HcMSC in Example 7.14 is Hd. Obviously, if we restrict to left-closed HcM-
SCs, local-choice HcMSCs are weaker than any other class proposed in this
section. However, they provide a sufficient, though not necessary condition for
implementability without deadlocks (cf. Chap. 8).

Note that algorithms for checking an HcMSC for the properties introduced
in this section reduce to algorithms for processing its graph representation.
Examining whether an HcMSC is safe can be done in linear time. Checking
if an HcMSC is globally cooperative is co-NP complete [76], whereas it can
be checked in polynomial time if a given HcMSC is local-choice (see [37] for
an overview). Moreover, there are a couple of related complexity results. For
example, Genest has recently shown that checking if some safe HcMSC is
equivalent to some lc-HcMSC is in co-NP [34].

There is a noncommercial, freely available tool for checking MSC speci-
fications for many of the above-mentioned properties [15]. It offers facilities
to create MSC and HcMSC documents and to visualize and analyze them
through a graphical user interface.

7.4 Message Contents and Non-Fifo Behavior

So far, we have not considered which message is actually sent when performing
a send event. To enrich our formalism that way, we augment each action with
an additional labeling indicating what kind of message is sent or received.
Accordingly, an MSC is defined with respect to Ag and a nonempty finite set
Λ of message contents. An action from Γ s

i (Ag, Λ) is henceforth a symbol i!aj,
which indicates that a message a ∈ Λ is sent from agent i to some agent j, and
an action from Γ r

i (Ag , Λ) is a symbol i?aj, which stands for receiving a so that
we will write (i!aj, j?ai) ∈ Com(Ag , Λ). As usual, the union of Γ s

i (Ag , Λ) and
Γ r

i (Ag, Λ) is denoted by Γi(Ag , Λ), that of Γ s(Ag , Λ) and Γ r(Ag , Λ) is denoted
by Γ (Ag , Λ). We canonically define the underlying distributed alphabet to be

Γ̃ (Ag , Λ) := (Γi(Ag , Λ))i∈Ag .
However, there is some scope for the canonical extension of the definition

of an MSC and we might choose between modeling a fifo or non-fifo channel
system. In both cases, we consider the following definition to be a starting
point. Hereby, let us define basic MSCs directly without going via partial
MSCs first.

104 7 Message Sequence Charts

Definition 7.17 (Extends Definition 7.3). A message sequence chart over

(Ag , Λ) is a structure M = (V, �, λ) from DAG(Γ̃ (Ag , Λ)) such that

• for any i ∈ Ag, �i = �i, i.e., �i is the cover relation of ≤i,
• for any u, v ∈ V , u �c v iff (λ(u), λ(v)) ∈ Com(Ag, Λ) and |M⇓u|λ(u) =
|M⇓v|λ(v), and

• |M|i!aj = |M|j?ai for any (i, j) ∈ Ch and a ∈ Λ.

If we left Definition 7.17 as it currently stands, we would allow non-fifo-
MSCs as depicted in Fig. 7.10 where messages of different type overtake each
other in channel (1, 2). In particular, an MSC over (Ag , Λ) is not necessar-
ily a fifo-dag. We therefore denote the set of (potentially non-fifo) MSCs
over (Ag, Λ) by MSC→↘(Ag , Λ). Such a communication model is considered in
[10, 61, 73]. Fortunately, though overtaking occurs, one can then still uniquely
determine an MSC on the basis of a linearization or a collection of projections.
This is no longer true if reversals between identical messages are allowed. Ac-
cordingly, Alur et al. call structures in which overtaking of identical messages
occurs degenerate [4]. To relate MSCs and their linearizations even in that
case, which is however explicitly provided by the MSC standard, one needs to
equip any position of a word with additional information, say, a time stamp,
to recover the order in which messages have been sent. If we wish an MSC
M = (V, �, λ) over (Ag , Λ) to behave in a fifo manner, we require in addi-

tion that M ∈ DAG⇒(Γ̃ (Ag , Λ)). Then, for any i, j ∈ Ag , u1, u2 ∈ Vi, and
v1, v2 ∈ Vj with both u1 �c v1 and u2 �c v2, we have u1 ≤i u2 iff v1 ≤j v2. To
refer to the set of those (fifo) MSCs over (Ag , Λ), we just write MSC(Ag, Λ).

Thus, MSC(Ag , Λ) = MSC→↘(Ag, Λ) ∩ DAG⇒(Γ̃ (Ag, Λ)). Moreover, we have
MSC(Ag , Λ) = MSC→↘(Ag , Λ) iff Λ is a singleton set.

1?a2

1!a2

1!b2

2!a1

2?b1

2?a1

Fig. 7.10. An MSC with non-fifo behavior

However, if not otherwise explicitly stated, we will for simplicity deal with
MSCs over Ag , abstracting away message contents. Exceptions are Sects. 7.5
and 8.5 as well as Theorem 8.34.

7.5 Live Sequence Charts 105

7.5 Live Sequence Charts

One might argue that HcMSCs are not yet flexible enough to be classified as
an adequate specification language. For example, they cannot formalize for-
bidden behavior or distinguish between possible and necessary behavior. Live
sequence charts (LSCs) largely correct those deficiencies [25]. They allow us
to distinguish between mandatory, provisional, and prohibited behavior, which
must, may, and must not happen, respectively. Hereby, mandatory progress
is suggested by liveness conditions such as “whenever A occurs, the system
has to act subsequently like B”. Consider the left-hand side of Fig. 7.11,
which depicts some universal LSC describing the part of a system where a
coin is flipped several times in a row until the outcome is “heads”. Referring
to the above liveness requirement, behavior A (flipping the coin) is enclosed
within a dashed borderline and called the prechart, whereas B (the coin is
either “heads” or “tails”), which is enforced to happen whenever A occurs, is
enclosed within a solid line and called the chart body.

For illustrative purposes, we consider MSCs over (Ag, Λ) in this section,
where Λ is a given message alphabet. Let us, however, simply write MSC
instead of MSC(Ag , Λ).

Definition 7.18 (Live Sequence Chart).

• A universal LSC (over (Ag , Λ)) is a pair (M, L) ∈ MSC × 2MSC (often
written as �(M, L) in this context).

• An existential LSC (over (Ag, Λ)) is an MSC M ∈MSC (often written as
♦(M) in this context).

Thus, an LSC can be of two different types: it can be either universal or
existential. This nomenclature leads one to assume its meaning for the system
behavior. In fact, a universal LSC �(M, L) is required to be satisfied by all
system runs, whereas the behavior imposed by an existential LSC must occur
in at least one possible run of the system.

An LSC specification (over (Ag, Λ)) is a pair S = (∀S, ∃S) with ∀S a
finite set of universal LSCs and ∃S a finite set of existential LSCs. Unlike
HcMSCs, S does not determine the one system in terms of its MSC language.
We rather say that an MSC language either satisfies S or not. Accordingly,
S might admit several different languages. Formally, we say that an MSC
language Lsys ⊆MSC satisfies S, written Lsys |= S, if both

• for any �(M, L) ∈ ∀S and any M1, M2 ∈MSC, M1 ·M ·M2 ∈ Lsys implies
M2 ∈ L ·MSC and

• for any ♦(M) ∈ ∃S, there are M1, M2 ∈MSC such that M1 ·M·M2 ∈ Lsys .

Of course, an LSC specification S is desired to determine at least one possible
system so that we call S consistent if {Lsys ⊆ MSC | Lsys |= S} is not the
empty set.

106 7 Message Sequence Charts

player coin

flip

heads

tails

flip

player coin

flip

Fig. 7.11. An LSC specification

Example 7.19. We suppose that S is the LSC specification over the pair
({player,coin}, {flip,heads,tails}) that is depicted in Fig. 7.11, which consists
of one universal LSC (whose second component contains two elements) and
one existential one. Then, S is consistent, as it is, for example, satisfied by
any nonempty subset of the MSC language that is illustrated in Fig. 7.12. In
particular, it is satisfied by the singleton set containing the MSC in which a
coin is flipped once and shows “heads”.

player coin

flip

tails

flip

tails

flip

heads

...

Fig. 7.12. A coin-flip scenario

7.7 (E)MSO-Definable MSC Languages 107

7.6 Regular MSC Languages

There have been several proposals for the right notion of regularity for MSC
languages. In their seminal work [45], Henriksen et al. consider an MSC lan-
guage to be regular if its set of linearizations forms a regular word language.
For example, the MSC language {G}∗ (where G is taken from Fig. 7.6 on
page 99), which allows us to concatenate G arbitrarily often, is not ∀-bounded
and hence cannot be regular. It induces the set of MSCs that send arbitrarily
many messages from agent 1 to agent 2. The corresponding set of lineariza-
tions gives rise to a set of words that, in particular, exhibit the same number
of send and receive events. This language is not recognizable in the free word
monoid, as, intuitively, we would need an unbounded counter for the number
of messages not being received. Otherwise, the language {G ·H}∗ is regular,
as its word language can be easily realized by a finite automaton. In simple
words, regularity aims at finiteness of the underlying global system, which
incorporates the state of a communication channel.

Definition 7.20 (Regular MSC Language [45]). An MSC language L ⊆
MSC is called regular if Lin(L) ∈ RECW(Γ), i.e., if Lin(L) is a regular word
language over Γ .

The class of regular MSC languages is denoted by RMSC.

Lemma 7.21 ([45]). Any regular MSC language is ∀-bounded.

Exercise 7.22. Prove Lemma 7.21.

As mentioned above, {G}∗ with G again taken from Fig. 7.6 is not regular.
However, it is ∃1-bounded and there is a simple gc-HMSC defining this lan-
guage. Moreover, there is an asynchronous cellular automaton (and, in terms
of MSCs, a communicating finite-state machine) accepting {G}∗. Thus, there
are EMSO definable languages that are not regular. We therefore consider
EMSO definability to be another criterion for regularity. So let us in the next
section examine (existential) MSO logic whose formulas are interpreted over
MSCs.

7.7 (E)MSO-Definable MSC Languages

Recall that an MSC is modeled as a graph, which corresponds to the view
taken in [17, 63] and also adopted by [12, 57] where (the graph of) an MSC is
called a message flow graph. However, while most theorems hold independently
of the modeling, the way to define an MSC immediately affects the syntax and
expressivity of (fragments of) the corresponding MSO logic. As MSC(Ag) ⊆
DAG(Γ (Ag)), the MSO formulas that can be applied to MSCs are those from
MSO(Γ (Ag)). Recall that the corresponding atomic entities are

108 7 Message Sequence Charts

λ(x) = σ x � y x ∈ X x = y

(where σ ∈ Γ , x, y ∈ Var and X ∈ VAR). The definition of their semantics
arises from the general case of graphs. Recall that the class of MSOMSC-
definable MSC languages is denoted byMSOMSC, that of EMSOMSC-definable
MSC languages by EMSOMSC and so on. Given i ∈ Ag and an individual
variable x, the formula Ag(x) = i will throughout the book stand for λ(x) ∈ Γi

(which, in turn, was a shorthand for
∨

σ∈Γi
λ(x) = σ).

Example 7.23. Let L be the set of MSCs over {1, 2, 3} whose lineariza-
tions are of the form (1!2)n(1!3)(3?1)(3!2)(2?3)(2?1)n, n ∈ IN. Note that
L ∈ gc-HcMSC and that an example MSC from L is provided by Ma from
Fig. 7.8 on page 102. In fact, L is MSOMSC-definable. Let ϕ be the conjunction
of the formulas ϕ1, ϕ2, and ϕ3, which describe the behavior of agents 1, 2,
and 3, respectively, and are given as follows:

ϕ1 = ∃x(λ(x) = 1!3
∧ ∀y(Ag(y) = 1 ∧ ¬(x = y)→ λ(y) = 1!2)
∧ ¬∃y(x �1 y))

ϕ2 = ∃x(λ(x) = 2?3
∧ ∀y(Ag(y) = 2 ∧ ¬(x = y)→ λ(y) = 2?1)
∧ ¬∃y(y �2 x))

ϕ3 = ∃x(λ(x) = 3?1
∧ ¬∃y(y �3 x))

So if we let ϕ = ϕ1 ∧ ϕ2 ∧ ϕ3, then LMSC(ϕ) = L. Observe that ϕ ∈ FO and
therefore L ∈ FOMSC. As L generates a set of total orders that gives rise to a
non-regular word language over Γ , Lin(L) is not MSO(Γ)W(Γ)-definable, when
formulas are interpreted over (arbitrary) words. However, as we interpret ϕ
over MSCs, only those words have to be considered that are linearizations of
MSCs. Accordingly, ϕ rather defines total orders generated by the rational ex-
pression (1!2)∗(1!3)(3?1)(3!2)(2?3)(2?1)∗ while restricting to MSCs only rules
out graphs that are not valid MSCs.

Exercise 7.24. Show that (L(Hb)–L(He) are taken from Fig. 7.7):

(a) {M ∈MSC |M is connected} ∈ FOMSC,
(b) L(Hb) ∈ FOMSC({1,2}),
(c) L(Hc) ∈ FOMSC({1,2,3}),
(d) L(Hd) ∈ FOMSC({1,2,3}),
(e) L(He) �∈ EMSOMSC({1,2,3,4}),
(f) EMSO[{≤i}i∈Ag , �c]MSC ⊆ EMSO[≤, �c]MSC,
(g) {M ∈MSC | |M|Γ s is even} �∈ FOMSC,
(h) {M ∈MSC | |M|Γ s is even} ∈ EMSOMSC,

7.8 Product MSC Languages 109

(i) the set of MSCs (V, �, λ) ∈ MSC({1, 2, 3}) such that, for any u, v ∈ V
with λ(u) = 1!2 and λ(v) = 1!3, we have u < v is not FOMSC({1,2,3})- but
EMSOMSC({1,2,3})-definable.

There is an MSC language that is MSOMSC-definable (even MSO[≤]MSC-
definable) but not EMSOMSC-definable. The proof of this separation result is
addressed in Chap. 9.

7.8 Product MSC Languages

Languages defined by finite transition systems working in parallel are known
as product languages and were initially studied by Thiagarajan [88] in the
domain of Mazurkiewicz traces where distributed components communicate
executing actions simultaneously rather than sending messages (cf. Chap. 6).
Taking up the idea of product behavior, [4] considers MSC languages that
are closed under inference, which can be described by the setting depicted in
Fig. 7.6 on page 99. Attempting to realize the MSC language {G, I}, one might
argue that the behavior of G ·I is a feasible one, too. As agents 1 and 2 do not
get in touch with processes 3 and 4, it is not clear to a single agent whether to
realize the behavior of G or that of I so that, finally, G·I might be inferred from
{G, I}. We call a set of MSCs that is closed under such an inference a weak
product MSC language. Note that, in [4], no finiteness condition was studied

so that, in principle, it is possible to realize {Gn2

| n ∈ IN}. Summarizing, we
may say that product behavior respects independence.

Let us be more precise and, given L ⊆MSC and M ∈MSC, write L �Ag M

if the following holds:

∀i ∈ Ag : ∃M′ ∈ L : M′ � i = M� i

Definition 7.25 (Weak Product MSC Language, cf. [4]). A set L ⊆
MSC is called a weak product MSC language (over Ag) if, for any M ∈MSC,
L �Ag M implies M ∈ L. The finite union of weak product MSC languages is
called a product MSC language.

Adopting the notation we introduced in the analogous framework for traces,
we denote by P0

MSC
the class of weak product MSC languages and by PMSC

the class of product MSC languages.
In other words, an MSC language L is a weak product MSC language

if every MSC that agrees on each process line with some MSC from L is
contained in L, too. Getting back to Fig. 7.6, G · I agrees with G on the first
two process lines and with I on the remaining two. Thus, G · I belongs to
any weak product language containing both G and I. As global knowledge
of an underlying system, one often allows several global initial or final states.
This is the reason for considering finite unions of weak product languages.
For example, {G, I} is a product MSC language, whereas {G · I}∗ is not.

110 7 Message Sequence Charts

RP0

EP0

P0

RP

EP

P

R

EMSO

2MSC

Fig. 7.13. The hierarchy of product MSC languages

Bringing together the concepts of product behavior and regularity, we call
RP0

MSC := RMSC ∩ P
0
MSC

the class of weak regular product MSC languages
and RPMSC the class of regular product MSC languages, which is the closure
of RP0

MSC under finite union.
Let us now extend our study towards product MSC languages in combi-

nation with EMSO-definable languages. As the class of EMSO-definable lan-
guages will turn out to capture exactly the class of languages implementable
in terms of a finite communicating finite-state machine, we rather concen-
trate on EMSO-definable languages than on MSO-definable ones. We call
EP0

MSC := EMSOMSC ∩ P
0
MSC

the class of weak EMSO-definable product MSC
languages, and we denote by EPMSC the class of EMSO-definable product MSC
languages, which is the closure of EP0

MSC under finite union.
If it is clear from the context that we talk about MSCs, we omit the

reference to MSC and simply write R, P, and MSO. Then, we may also
speak of regular or product languages.

Theorem 7.26. The classes of languages proposed so far (apart from the class
HcMSC, which is reconsidered in Chap. 9 in more detail) draw the picture
shown in Fig. 7.13. The hierarchy is strict.

Proof. We will prove R ⊆ EMSO in Chap. 8. The other inclusions are
straightforward. It remains to show strictness and incomparability. Consider
the MSCs G and I from Fig. 7.6 on page 99. For a (crossed) arrow from a class
of MSC languages C1 to a class C2 in Fig. 7.14, the right-hand table specifies
an MSC language L with L ∈ C1 and L �∈ C2. �

7.9 Relationships to Mazurkiewicz Traces

We recall two approaches to bridge the gap between traces and MSCs. The one
is tailored to universally bounded MSC languages and applies some relabeling

7.9 Relationships to Mazurkiewicz Traces 111

RP0

EP0

P0

RP

EP

P

R

EMSO

2MSC

// 4

//1

3 \\

2 \\

1 {G, I}

2 {G}∗

3 L(fk) with k ≥ 2
(cf. Theorem 9.5)

4 L bN+1 with bN ≥ 1
(cf. Lemma 8.45)

Fig. 7.14. Strictness and incomparability in the hierarchy

to the events of an MSC to obtain a trace [56], whereas the other, basically
considering several events of an MSC to be an event of a trace, is likewise
applicable to unbounded behaviors [73].

In the following, let α ∈ {+,−} and let B be a positive natural number. We
define a dependence alphabet (Γ ×{1, . . . , B}, DB) where (σ1, n1)DB(σ2, n2)
if we have

• Ag(σ1) = Ag(σ2), or
• (σ1, σ2) ∈ Com ∪ Com−1 and n1 = n2.

Note that, though the definitions from this section each depend on Ag , we
omit a corresponding reference. Setting Co to be {(σ, τ, n) | (σ, τ) ∈ Com, n ∈

{1, . . . , B}}, let Γ̃B be the distributed alphabet (Γ γ)γ∈Ag∪Co where, for i ∈
Ag , Γ i := Γi × {1, . . . , B} and, for (σ, τ, n) ∈ Co, Γ (σ,τ,n) := {(σ, n), (τ, n)}.
For example, if Ag = {1, 2} and B = 2,

Γ̃B = ({(1!2, 1), (1?2, 1), (1!2, 2), (1?2, 2)},
{(2!1, 1), (2?1, 1), (2!1, 2), (2?1, 2)},
{(1!2, 1), (2?1, 1)},
{(1!2, 2), (2?1, 2)},
{(2!1, 1), (1?2, 1)},
{(2!1, 2), (1?2, 2)}).

Remark 7.27. Given B ≥ 1, we have D eΓB
= DB .

To an MSC M = (V, �, λ) ∈MSC∀B, we assign the Γ ×{1, . . . , B}-labeled
poset PB(M) := (V ′,≤′, λ′) where V ′ = V , ≤′ = ≤, and, for each u ∈ V , we
define λ′(u) to be the new labeling (λ(u), (|M↓u|λ(u) mod B) + 1).

Lemma 7.28 (Kuske [56]). Let B ≥ 1. For any MSC M ∈MSC∀B, PB(M)

is a poset-trace over Γ̃B.

112 7 Message Sequence Charts

Exercise 7.29. Prove Lemma 7.28.

Given M ∈ MSC∀B, we moreover denote by Trα
B(M) the Mα-trace of the

poset-trace PB(M). Note that the mapping Trα
B : MSC∀B → TRα(Γ̃B) is

injective. It is canonically extended towards MSC languages. Thus, involving
some relabeling, an MSC language L ⊆ MSC∀B can be converted into some
trace language Trα

B(L) ⊆ TRα(Γ̃B).

Example 7.30. Taking M ∈MSC∀2 to be the MSC from Fig. 7.5a, the M−-
trace Tr−

2 (M) over Γ̃2 is shown in Fig. 7.15. Note that, in fact, the labelings of
the events u and v, which are incomparable with respect to the partial order
≤ associated with Tr−

2 (M), are independent as they do not occur together in

some local alphabet of Γ̃2.

u

v

(1!2, 1)

(1?2, 1)

(1!2, 2)

(1?2, 2)

(1!2, 1)

(2!1, 1)

(2?1, 1)

(2!1, 2)

(2?1, 2)

(2?1, 1)

Fig. 7.15. The M−-trace of a 2-bounded MSC

In [35], the above relabeling is applied to existentially-bounded MSCs as
well, which also gives rise to Mazurkiewicz traces if we add some edges between
events that are actually independent in the MSC.

In the following, let us compare traces and MSCs in the scope of regular
MSC languages and justify that, in this regard, we have chosen the same
terminology for traces and MSCs. In particular, we raise the hope that results
and logics regarding product trace languages are amenable to MSCs, such
as the local temporal logic PTL, which is tailored to systems that support
product behavior [88, 89].

Proposition 7.31 ([45, 56]). For any α ∈ {+,−}, B ≥ 1, and L ⊆MSC∀B,

L ∈ RMSC iff Trα
B(L) ∈ R

TRα(eΓB)

Proof. “Only if”: Let B ≥ 1 and let L ⊆ MSC∀B be a ∀B-bounded regular
MSC language, i.e., Lin(L) is recognized by some minimal finite automaton A
over Γ (which means that, in particular, from each state of A, some final state
is reachable). As each state of A can be associated with a fixed channel con-
tents, it is easy to provide the transitions of A with additional labelings from

7.9 Relationships to Mazurkiewicz Traces 113

{1, . . . , B}, which leads to a finite automaton over Γ ×{1, . . . , B} recognizing
Lin(Trα

B(L)).

“If”: As shown in [45, 56], any asynchronous automaton over Γ̃B has an
equivalent counterpart in the form of a (strongly) ∀-bounded communicating
finite-state machine (cf. Chap. 8). Together with Theorems 6.22 and 8.22, this
proves the lemma. �

Proposition 7.32. For any α ∈ {+,−}, B ≥ 1, and L ⊆MSC∀B,

L ∈ RP0
MSC iff Trα

B(L) ∈ RP0
TRα(eΓB)

Proof. According to Proposition 7.31, the operator Trα
B and its converse both

preserve regularity.
“Only if”: Suppose L ⊆ MSC∀B to be a weak regular product MSC lan-

guage. Recall that Trα
B(L) is a regular trace language over Γ̃B = (Γ γ)γ∈Ag∪Co .

Moreover, let T ∈ TRα(Γ̃B) such that, for any γ ∈ Ag ∪ Co, there is a trace
Tγ ∈ Trα

B(L) satisfying Tγ � γ = T � γ. Then, T ∈ Trα
B(MSC∀B) and, in par-

ticular, we have Ti � i = T � i and, thus, (Trα
B)−1(Ti) � i = (Trα

B)−1(T) � i for
any i ∈ Ag , which implies (Trα

B)−1(T) ∈ L and T ∈ Trα
B(L).

“If”: Suppose L ⊆ MSC∀B to generate a weak regular trace language
over Γ̃B , i.e., Trα

B(L) ∈ RP0
TRα(eΓB)

, and let M ∈ MSC∀B such that, for any

i ∈ Ag , there is Mi ∈ L with Mi � i = M � i. Trivially, we have that, for any
i ∈ Ag , Trα

B(Mi) � i = Trα
B(M) � i. Moreover, for any γ = (i!j, j?i, n) ∈ Co,

Trα
B(Mi) � γ = Trα

B(M) � γ (note that also Trα
B(Mj) � γ = Trα

B(M) � γ). This
is because, in the trace of a ∀B-bounded MSC, the n-th receipt of a message
through (i, j) is ordered before sending a message from i to j for the (n+B)-th
time. Altogether, we have Trα

B(M) ∈ Trα
B(L) and, consequently, M ∈ L. �

The proof of the following extension towards finite unions of weak regular
product languages is left to the reader as an easy exercise.

Corollary 7.33. For any α ∈ {+,−}, B ≥ 1, and L ⊆MSC∀B,

L ∈ RPMSC iff Trα
B(L) ∈ RP

TRα(eΓB)

A nonempty partial MSC M is called prime if M = M1 · M2 implies
M1 = 1MSC or M2 = 1MSC. Consider Fig. 7.16, for example. The partial MSCs
from parts (a) and (d) are prime, while the partial MSCs in between are not.
For the rest of this section, let Π be a nonempty finite set of prime partial
MSCs, which will be the universe of a trace alphabet. The notion of prime
partial MSCs, which was first given in [43], gives rise to a natural dependence

relation based on the distributed alphabet Σ̃Π := (Σi)i∈Ag where, for any
i ∈ Ag , Σi = {M ∈ Π | i ∈ Ag(M)}. We may accordingly declare prime
partial MSCs M and M′ independent if Ag(M) ∩ Ag(M′) = ∅.

Lemma 7.34. For α ∈ {+,−}, the morphism RΠ : TRα(Σ̃Π) → 〈Π〉PMSC,

which maps an Mα-trace over Σ̃Π with linearization a1 . . . an onto the partial
MSC a1 · . . . · an, is an isomorphism.

114 7 Message Sequence Charts

1 2

2

(a)

1 2

2

1

(b)

1 2

(c)

1 2

(d)

Fig. 7.16. Some prime and some non-prime partial MSCs

The proof is similar to a proof from [73] where the corresponding result is
shown for basic MSCs rather than partial MSCs.

A basic MSC may correspond to several traces, i.e., there might be distinct
traces T1, T2 ∈ TRα(Σ̃Π) such that RΠ(T1) and RΠ(T2) represent the same
MSC. This applies, for example, to the M+-traces from Fig. 7.17: though
they are different, they represent one and the same basic MSC. However, in
our main application of prime partial MSCs in Chap. 9, those traces are not
distinguished anyway.

1 2

1 2

2

1 2

1

1 2

{1} {2}

{1} {2}

1 2

1 2

1 2

{1, 2}

{1, 2}

T1 : T2 :

Fig. 7.17. Two trace representations of one basic MSC

7.10 Bibliographic Notes

One of the first papers aiming at giving MSCs a formal semantics was [67],
which described the behavior of an MSC in a process algebra. To make MSCs

7.10 Bibliographic Notes 115

accessible to automata theory and logics, however, it pays to consider an
MSC to be a partial order [52] or a graph [12], whose entities are handled by
automata more naturally. Summarizing, we model an MSC as a graph, adopt-
ing the view taken in [12, 17, 57, 63] rather than considering partial orders
[45, 52, 56, 73].

While we first proposed HcMSCs as the most general case of our specifi-
cation language, HMSCs were actually the starting point of everything [68].
The study of compositionality was then initiated in [40] by Gunter et al. Note
that, in [40], left-closed HcMSCs are called realizable. The notion of global
cooperativity was independently introduced by Morin in [73] and Genest et
al. in [37], who also proposed the notion of local cooperativity and showed
that any local-choice HMSC is implementable without deadlocks. Since then,
several extensions have been considered to facilitate and enrich the specifica-
tion of communicating systems. For instance, [59] introduces a formalism that
allows for generating processes during system execution, while we assume the
number of processes to be fixed. In [11] and [75], netcharts are proposed and
studied, which combine HMSCs with Petri nets to generate executable behav-
ior. A formalism that is related to LSCs but follows a different approach is that
of triggered message sequence charts [87], which provide means of expressing
conditional and partial behavior. Another important area, which, however, is
not considered in this book, is verification of specifications against formalisms
such as temporal logics [36, 69, 70], MSO logics [59, 63, 64], and template MSCs
[36, 78]. For a general introduction to that field, in particular model checking,
the reader may be referred to [23].

8

Communicating Finite-State Machines

In this chapter, we introduce and study communicating machines (CMs), a
model of computation rather than a specification language, which is close
to a real-life implementation of a communicating system where distributed
components communicate via fifo channels (which might be reliable or faulty,
bounded or unbounded).

8.1 Communicating (Finite-State) Machines

A CM is a collection of state machines that share one global initial state and
several global final states. The machines are connected pairwise with (for the
moment) unbounded reliable fifo buffers. The transitions of each component
are labeled with send or receive actions. Hereby, a send action i!j puts a mes-
sage at the end of the channel from i to j. A receive action can be taken
provided the requested message is found in the channel. To extend the ex-
pressive power, CMs can send certain synchronization messages. Let us be
more precise:

Definition 8.1 (Communicating Machine). A communicating machine
(over Ag) is a structure

A = ((Ai)i∈Ag ,D, sin , F)

such that

• D is a nonempty finite set of synchronization messages (or data),
• for each i ∈ Ag, Ai is a pair (Si, ∆i) where

– Si is a nonempty set of (i-)local states and
– ∆i ⊆ Si × Γi(Ag)×D × Si is the set of (i-)local transitions,

• sin ∈
∏

i∈Ag Si is the global initial state, and
• F ⊆

∏
i∈Ag Si is the finite set of global final states.

118 8 Communicating Finite-State Machines

A CM A = ((Ai)i∈Ag ,D, sin , F), Ai = (Si, ∆i), is called

• an N-CM, N ∈ IN≥1, if |D| = N ,
• a communicating finite-state machine (CFM) or finite if, for each i ∈ Ag ,

Si is finite,
• locally accepting if, for any i ∈ Ag , there is a set Fi ⊆ Si such that

F =
∏

i∈Ag Fi, and
• deterministic if, for any i ∈ Ag , ∆i satisfies the following conditions:

– If (s, i!j, m1, s1) ∈ ∆i and (s, i!j, m2, s2) ∈ ∆i, then m1 = m2 and
s1 = s2.

– If (s, i?j, m, s1) ∈ ∆i and (s, i?j, m, s2) ∈ ∆i, then s1 = s2.

By CM(Ag), we denote the class of CMs over Ag and by CFM(Ag) the
class of CFMs.1 However, as the underlying set of agents will be clear from
the context, we henceforth omit any reference to Ag and just write CM and,
respectively, CFM. For a set C of CMs, we denote by N -C, C�, and det-C
the classes of N -, locally accepting, and deterministic CMs A with A ∈ C,
respectively.

We now define the behavior of CMs and, in doing so, adhere to the style of
[56]. In particular, an automaton will run on MSCs rather than linearizations
of MSCs, allowing for its distributed behavior. Let A = ((Ai)i∈Ag ,D, sin , F),
Ai = (Si, ∆i), be a CM and moreover let M = (V, �, λ) ∈ MSC be an
MSC. A run of A on M is a pair (ρ, µ) of mappings ρ : V →

⋃
i∈Ag Si with

ρ(u) ∈ SAg(u) for each u ∈ V and µ : V → D such that

• for any u, v ∈ V with u �c v, µ(u) = µ(v), and

• for any u ∈ V , (sourcesin

(M,ρ)(u)[Ag(u)], λ(u), µ(u), ρ(u)) ∈ ∆Ag(u).

We call (ρ, µ) accepting if finals
in

(M,ρ) ∈ F . By L(A) := {M ∈ MSC | there is
an accepting run of A on M}, let us denote the language of A. In particular,
1MSC is a member of L(A) if (and only if) sin ∈ F . Given a class C of CMs, we
furthermore set L(C) to be {L ⊆MSC | there is A ∈ C such that L(A) = L},
which is the class of languages of C. We consider L(CFM) to be some kind
of standard class, which is identified by CFM := L(CFM). We also say that
the languages from CFM are the implementable ones. This nomenclature is
arbitrary and rather geared to the literature, where the term realizability usu-
ally refers to locally accepting 1-CMs. The intuition behind local acceptance
is that recognition by the whole system defers to acceptance by any single
component. In other words, any component may decide independently of the
others whether it accepts or not. In contrast, the general acceptance condition
allows to take a global view of the system to decide upon acceptance.

Example 8.2. A (nondeterministic) locally accepting 2-CFM A over {1, 2}
with set of synchronization messages {♦, �} is illustrated in Fig. 8.1. As we

1 Note that CM(Ag) does not impose any restriction on the state space, which can
therefore produce non-recursive behavior.

8.1 Communicating (Finite-State) Machines 119

deal with local acceptance, we depict a local final state by a second circle.
Note that L(A) = {M ∈ MSC({1, 2}) | M � 1 = (1!2)n ((1?2)(1!2))

n
and

M � 2 = ((2?1)(2!1))n (2?1)n for some n ∈ IN≥1} cannot be recognized by
some CM with only one synchronization message, even if we allowed infinite
local state spaces. Nevertheless, it can be recognized by some deterministic
CFM. The verification of this is left to the reader as an exercise. In particular,
the second component, A2, has to be modified accordingly.

s0

s1

s2

t0

t1

t2

1!2,♦

2?1,�

1?2,♦

2!1,♦1!2, � 1?2,♦

2?1,♦ 2!1,♦

A1: A2:

Fig. 8.1. A communicating finite-state machine

In [35, 45, 73], a run of a CM is defined on linearizations of MSCs rather
than on MSCs, which reflects its operational behavior at the expense that
several execution sequences might stand for one and the same run. As usual,
such a view relies on the global transition relation of a CM, which, in turn,
defers to the notion of a configuration. Let us be more precise and consider
a CM A = ((Ai)i∈Ag ,D, sin , F), Ai = (Si, ∆i). By SA, we denote the set∏

i∈Ag Si of global states of A. The set of configurations of A, denoted by
ConfA, is the cartesian product SA × CA where CA := {χ | χ : Ch → D∗} is
the set of possible channel contents of A. Now, the global transition relation
of A, =⇒A ⊆ ConfA × Γ ×D × ConfA, is defined as follows:

• ((s, χ), i!j, m, (s′, χ′)) ∈ =⇒A if
– (s[i], i!j, m, s′[i]) ∈ ∆i,
– χ′ = χ[(i, j)/m · χ((i, j))], and

(i.e., χ′ maps (i, j) to m · χ((i, j)) and, otherwise, coincides with χ)
– for all k ∈ Ag \ {i}, s[k] = s′[k].

• ((s, χ), i?j, m, (s′, χ′)) ∈ =⇒A if there is a word w ∈ D∗ such that
– (s[i], i?j, m, s′[i]) ∈ ∆i,
– χ((j, i)) = w ·m,
– χ′ = χ[(j, i)/w], and
– for all k ∈ Ag \ {i}, s[k] = s′[k].

120 8 Communicating Finite-State Machines

Let χε : Ch → D∗ map each channel onto the empty word. When we set
(sin , χε) to be the initial configuration and F × {χε} to be the set of fi-
nal configurations of A, A defines in the canonical way a word language
Lword(A) ⊆ W(Γ) abstracting away synchronization messages. Namely, we
define σ1 . . . σn ∈ W(Γ) to be contained in Lword(A) if there are messages
m1, . . . , mn ∈ D and configurations (s0, χ0), . . . , (sn, χn) ∈ ConfA such that
(s0, χ0) = (sin , χε), (sn, χn) ∈ F × {χε}, and, for any k ∈ {1, . . . , n},
((sk−1, χk−1), σk, mk, (sk, χk)) ∈ =⇒A. In particular, Lword (A) uniquely de-
termines an MSC language.

Lemma 8.3. For any CM A, we have Lword(A) = Lin(L(A)).

Given configurations (s, χ), (s′, χ′) ∈ ConfA, we write (s, χ) �A (s′, χ′)
if, for some σ ∈ Γ and m ∈ D, we have ((s, χ), σ, m, (s′, χ′)) ∈ =⇒A. We
call a configuration (s, χ) ∈ ConfA reachable in A if (sin , χε) �∗

A (s, χ). Two
possible steps of �A, the one concerning a send action, the other concerning
a receive action, are illustrated in Fig. 8.2 and 8.3.

s0

s1

s2

t0

t1

t2

1!2,♦

2?1,�

1?2,♦

2!1,♦1!2, � 1?2,♦

2?1,♦ 2!1,♦

A1: A2:

. . .

. . .

♦♦

♦

�A

s0

s1

s2

t0

t1

t2

1!2,♦

2?1, �

1?2,♦

2!1,♦1!2, � 1?2,♦

2?1,♦ 2!1,♦

A1: A2:

. . .

. . .

♦♦�

♦

Fig. 8.2. The global transition relation of a CFM executing a send action

Exercise 8.4. Consider the configurations illustrated in Fig. 8.2 and 8.3.
Which of these configurations are reachable in the CFM A from Fig. 8.1?
Afterwards, determine the complete set of configurations that are reachable
in A.

Exercise 8.5. Show Lemma 8.3.

Note that, for any deterministic (finite) CM A = ((Ai)i∈Ag ,D, sin , F),
Ai = (Si, ∆i), and any MSC M, there is at most one run of A on M. However,
A can be extended towards a deterministic (finite, respectively) CM A′ =

8.1 Communicating (Finite-State) Machines 121

s0

s1

s2

t0

t1

t2

1!2,♦

2?1,�

1?2,♦

2!1,♦1!2, � 1?2,♦

2?1,♦ 2!1,♦

A1: A2:

. . .

. . .

♦♦�

♦

�A

s0

s1

s2

t0

t1

t2

1!2,♦

2?1, �

1?2,♦

2!1,♦1!2, � 1?2,♦

2?1,♦ 2!1,♦

A1: A2:

. . .

. . .

♦�

♦

Fig. 8.3. The global transition relation of a CFM executing a receive action

((A′
i)i∈Ag ,D

′, s′0, F
′), A′

i = (S′
i, ∆

′
i), such that both L(A′) = L(A) and, for

any MSC M, there is exactly one run of A′ on M. To this aim, we extend the
set of synchronization messages D by a message fail , i.e., D′ = D ·∪ {fail},
and, for each i ∈ Ag , enrich Si by a sink state sink i, i.e., S′

i = Si ·∪ {sink i}.
For any i ∈ Ag , ∆′

i already contains all the transitions from ∆i. Moreover,
transitions are added to ∆′

i according to the following procedure. For any
s ∈ Si and j ∈ Ag \ {i},

• if there is no m ∈ D and s′ ∈ Si such that (s, i!j, m, s′) ∈ ∆i, add a
transition (s, i!j, fail , sink i), and

• add a transition (sink i, i!j, fail , sink i).

For any s ∈ Si, j ∈ Ag \ {i}, and m ∈ D,

• if there is no s′ ∈ Si such that (s, i?j, m, s′) ∈ ∆i, add a transition
(s, i?j, m, sink i),

• add a transition (s, i?j, fail , sink i), and
• add a transition (sink i, i?j, m

′, sink i) for any m′ ∈ D′.

Finally, sin and F are adopted from A, i.e., s′0 = sin and F ′ = F .
Thus, local states from Si that lack an outgoing send transition labeled

i!j for some j, are enabled to send at least a message fail to j, though this is
doomed to failure. Moreover, a missing receipt of a message m is made possi-
ble, even if it ends in a state sink i, which does not contribute to an accepting
run either. Thus, the above transformation affects neither the recognized lan-
guage nor the property of being deterministic. But it enables the resulting
automaton to execute a run on any given MSC. Those automata will be used
to show in Chap. 9 that deterministic CFMs are strictly weaker than their
nondeterministic counterpart.

122 8 Communicating Finite-State Machines

8.2 Channel-Bounded and Deadlock-Free CMs

A natural restriction of CMs comes along with bounded channels whose ca-
pacity is a priori limited.

For B ∈ IN≥1, a CM A is called universally B-bounded (∀B-bounded)
if L(A) is ∀B-bounded.2 Furthermore, A is called universally bounded (∀-
bounded) if it is ∀B-bounded for some B ≥ 1. Note that A is ∀-bounded
if only a finite number of configurations is reachable in A. Given a class C

of CMs, let ∀C denote the set of ∀-bounded CMs A with A ∈ C. The same
principle as for universal boundedness applies to the existential one. In this
sense, let ∃CFM denote the class of ∃-bounded CFMs. Note that the CFM
from Fig. 8.1 is not even contained in ∃CFM.

Note that our definition of boundedness for CMs coincides with the one
used in [56]. According to Henriksen et al., who use a slightly different notion of
bounded CMs, we call a CM A strongly ∀B-bounded for some B ≥ 1 if, for any
(i, j) ∈ Ch and any configuration (s, χ) that is reachable in A, |χ((i, j))| ≤ B.
A CM A is called strongly ∀-bounded if it is strongly ∀B-bounded for some
B ≥ 1. Given a class C of CMs, let ∀∀C denote the set of strongly ∀-bounded
CMs A with A ∈ C. Observe that a strongly ∀-bounded CM is ∀-bounded.
Obviously, the 1-CFM from Fig. 8.4 is strongly ∀-bounded.

Besides determinism, the absence of deadlocks is a crucial aim when de-
signing a distributed protocol. The study of realizability without deadlocks
was conceived in [4] and then continued in [10] and [61]. While, to some ex-
tent, finite automata over words can be assumed to be free from deadlock
states, which cannot contribute to an accepting run anymore, CFMs (and
also asynchronous (cellular) automata) are more complicated in this regard:
in general, deadlocks cannot be avoided. Even simple finite MSC languages
are inherently non-safe. Moreover, it is undecidable if a CFM has a deadlock
at all. Let us be more precise and suppose A = ((Ai)i∈Ag ,D, sin , F) to be a
CM. We say that (s, χ) ∈ ConfA is a deadlock configuration of A if there is no
(s′, χ′) ∈ F × {χε} such that (s, χ) �∗

A (s′, χ′). We call A safe if there is no
deadlock configuration reachable in A. For a set C of CMs, safe-C will denote
the class of safe CMs A with A ∈ C.

s0

s1 s2

t0

t1 t2

1!2 1?2 2!1 2?1

A1 : A2 :

Fig. 8.4. A strongly ∀-bounded non-safe CFM

2 Note that this is a semantic characterization, as it depends on the language of A.

8.2 Channel-Bounded and Deadlock-Free CMs 123

Example 8.6. Consider the non-safe CFM A ∈ 1-∀CFM� over {1, 2} from
Fig. 8.4 (say, with extra message ♦, which is omitted). It is non-safe, because
the deadlock configuration ((s1, t1), ((1, 2) �→ ♦, (2, 1) �→ ♦)) is reachable in
A. It even holds that L(A) �∈ L(safe-CM), i.e., the language of A cannot
be recognized by some safe CM. The structural problem is that, in any im-
plementation of L(A) (provided there is only one global initial state), both
agents 1 and 2 can independently decide to send a message, which inevitably
leads into a deadlock configuration. Recall that those phenomena are known
as non-local-choice.

Example 8.6 shows that L(1-∀CFM�) and L(safe-CM) are incomparable
with respect to inclusion. In particular, the weakest model of a CFM is able
to produce inherently non-safe MSC languages. However, it was shown in
[37] that any local-choice HcMSC can be implemented by some safe locally
accepting CFM.

Theorem 8.7 ([34, 37]).

lc-HcMSC ⊆ L(safe-CFM�)

To exemplify Theorem 8.7, consider the local-choice HMSC G+G · (G+H)+

with G and H taken from Fig. 7.6 on page 99. It is implemented by the safe
locally accepting CFM that is illustrated in Fig. 8.5.

1!2, G

1!2,H

2?1,G

2?1, H

1!2, G 2?1,G

1!2, H 2?1, H1?2, G 2!1,G

1?2,H 2!1,H

A1: A2:

Fig. 8.5. A safe locally accepting CFM implementing a local-choice HMSC

Consider two variants of CMs. The first allows for accepting extended
MSCs, say from 〈MSC, Q〉 for some alphabet Q. Accordingly, for i ∈ Ag , the
i-local transition relation of a CM is henceforth a subset of Si×(Γi×Q)×D×Si.
However, the type of an “action” (σ, q) ∈ Γ × Q still depends only on σ so
that, in particular, a run may allow communicating events to have distinct
additional labelings. Such an automaton will be used in Chap. 9 to characterize
the language of some EMSO(Γ)-formula ϕ(X1, . . . , Xn), which, as mentioned
in Chap. 3, defines a subset of 〈MSC, {0, 1}n〉.

A second variant of a CM allows us to specify different starting points of
a run instead of one single global initial state. So let an extended CM be a
CM A = ((Ai)i∈Ag ,D, Sin , F) where, though, Sin ⊆

∏
i∈Ag Si is a nonempty

124 8 Communicating Finite-State Machines

finite set of global initial states. An (accepting) run of A and the language
of A are defined analogously to the CM case: an (accepting) run of A is
an (accepting, respectively) run of one of the CMs ((Ai)i∈Ag ,D, s0, F) with
s0 ∈ Sin . However, it turns out that several global initial states do not extend
expressiveness.

Lemma 8.8. Let N ≥ 1 and L be an MSC language. Then, L is the language
of a (∀-bounded/finite/∀-bounded and finite) N-CM iff it is the language of
an extended locally accepting (∀-bounded/finite/∀-bounded and finite, respec-
tively) N-CM.

Proof. “Only if”: Let A = ((Ai)i∈Ag ,D, sin , F), Ai = (Si, ∆i), be a CM. For
each state s ∈ F , introduce a global initial state running a distinct copy A(s)
of A with local state spaces Ss

i (we denote a copy of a local state s ∈ Si in
A(s) by ss). The set of global final states is henceforth the cartesian prod-
uct

∏
i∈Ag

⋃
s∈F {s[i]

s}. The resulting CM is locally accepting and, obviously,
recognizes the same language as A without having affected the number of
messages, boundedness, or finiteness properties.

“If”: Let A = ((Ai)i∈Ag ,D, Sin , F), Ai = (Si, ∆i), be an extended CM
where F is the cartesian product

∏
i∈Ag Fi of sets Fi ⊆ Si. Similarly to the

“only if”-case, the basic idea is to create a copy Ss0
i = Si×{s0} of Si for any

global initial state s0 ∈ Sin . Starting in some new global initial state sin and
switching to some state (s, s0) now simulates a run of A from s0 by henceforth
allowing the system to enter no other copy than Ss0

i . In a global final state,
it is then checked whether the other agents agree in their choice of s0. More
formally, we may have local transitions of the form ((s, s0), σ, m, (s′, s0)) with
s0 ∈ Sin if (s, σ, m, s′) is a local transition of A. Moreover, we add some initial
transitions (sin [i], σ, m, (s, s0)) if (s0[i], σ, m, s) is some i-local transition of A
with s0 ∈ Sin . It remains to reformulate the acceptance condition. Henceforth,
a state s is a global final state if there is s0 ∈ Sin such that, for any i ∈ Ag ,
either s[i] = sin [i] and s0[i] ∈ Fi or s[i] ∈ Fi×{s0}. Again, neither the number
of messages used nor boundedness or finiteness properties have changed. As
F is finite, we also create a finite number of global final states only. �

8.3 Undecidability Results

We will now mention some undecidability results concerning emptiness, safety,
and boundedness for CFMs. The following undecidability result is due to
Brand and Zafiropulo [19].

Theorem 8.9 ([19]). The following problem is undecidable:

Input: A ∈ CFM.

Question: Is L(A) empty?

8.3 Undecidability Results 125

Proof. We reduce the halting problem for Turing machines to the emptiness
problem for CFMs (cf. Theorem 2.9). Say we are given a Turing machine
M = (Q, Σ, ∆, �, q0, qf). The CFM A simulatingM will employ two agents.
Roughly speaking, agent 1 will provide agent 2 with the current configuration
by sending it as a word from left to right, letter by letter. The message alpha-
bet of A is accordingly the set Σ× (Q∪{�}). However, for a ∈ Σ and q ∈ Q,
we will in the following write (a, q) as a← q and (a, �) just as a. While read-
ing a configuration step by step, agent 2 will locally modify it according to a
given transition and then send the updated configuration letter by letter back
to agent 1. Henceforth, the job of agent 1 is to send every letter it receives
immediately back to agent 2, thus providing its opponent with the next con-
figuration, which can be modified anew to obtain a successor configuration.
Note that the length of configurations that are needed during a computation
of a Turing machine cannot a priori be bounded by a natural number so that
a simulating CFM will in general be unbounded (even existentially).

For a more detailed glimpse, consider Fig. 8.6, simulating the computation
of a Turing machine that is depicted in Fig. 2.1 on page 15. First of all, agent
1, say being in state s0 and moving to s1, sends the letter � to agent 2 together
with the information that this is the letter that the Turing machine is currently
reading in state q0. Moving to state s2, agent 1 sends # to agent 2, which
is a separating symbol to indicate that the current configuration has been
transmitted completely. From now on, agent 1 insistently sends any received
message back to agent 2: being in state s2, it can receive an arbitrary messages
m and switch to state s(m), from which it will reproduce the message m to
make it available to agent 2 again.

Agent 2, starting from t0, receives � ← q0 and switches to a state that
contains a suitable transition to be applied in q0 while reading �. In the ex-
ample, it decides in favor of the transition (q0, �, a, R, q1), which means that
the Turing machine is about to move to the right. Thus, the current configu-
ration has to be extended on the right-hand side to obtain the corresponding
successor configuration. It is up to agent 2 to provide agent 1 with the up-
dated configuration. It therefore sends � ← q1, which corresponds to what
the Turing machine is about to read next, to agent 1, followed by the letter
a, into which � has changed according to the transition. Similarly to agent 1,
agent 2 henceforth just sends the remainder of the current configuration back
to agent 1 (in the example, however, it already receives #, which marks the
end of a configuration, and sends it back).

Once more, agent 1 provides agent 2 with the updated configuration so
that agent 2 may determine the third configuration of that computation: after
having read #, the latter receives �← q1 to enter a state containing a suitable
transition, say (q1, �, b, L, q2). Thus, the Turing machine is changing � into
b and then moving left. Agent 2 therefore first sends b (instead of � ← q1)
back to agent 1, then receives a, which is what the Turing machine will read
next, and accordingly sends a← q2 to its counterpart, agent 1.

126 8 Communicating Finite-State Machines

γ0

n

γ1

8>>><>>>:

γ2

8>>><>>>:

γ3

8>>>>>>>>><>>>>>>>>>: ...

9>>>=>>>; γ1

9>>>=>>>; γ2

9>>>>>>>>>=>>>>>>>>>;
γ3

� ← q0

#

� ← q1

a

#

b

a ← q2

#

b

a′

� ← q3

#

� ← q1

a

#

b

a ← q2

#

b

a′

� ← q3

#

Fig. 8.6. An MSC simulating the computation of a Turing machine

8.3 Undecidability Results 127

Agent 2 now receives the end marker # and sends it back immediately,
awaiting the updated configuration, which starts with a b. Reading the b,
agent 2 will guess the “right” transition that has to be applied “somewhere”
in the configuration. If we deal with a left transition or with a transition
that does not make the Turing machine move, agent 2 may just wait for a
symbol containing an arrow and a state of the Turing machine and to alter it
correspondingly. Otherwise, concerning a right-moving transition, agent 2 has
to guess in addition what the position right before the head is. For example,
provided agent 2 decided in favor of (q2, a, a′, R, q3) while reading the b, it
would have to

• send b← q3 instead of just b, entering a state t(a← q2),
• receive a← q2 (no other symbol can be received in state t(a← q2)), and
• send a′ back to agent 1.

However, in the example, the left-moving transition (q2, a, a′, L, q3) is applied
so that agent 2

• sends b unchanged back to agent 1,
• detects (receives) a← q2,
• sends a′ to agent 1 entering a state indicating that the symbol to be sent

next has to be equipped with an arrow and state q3, and
• receives # so that the symbol �← q3 has to be inserted before returning

#.

Recall that we are interested in a CFM whose language is empty iff the
Turing machine at hand can reach a configuration featuring qf . To this aim,
we introduce two local final states sf and tf , one for agent 1 and one for agent
2, respectively. At any time, agent 1 may switch into sf , in which arbitrary
and arbitrarily many messages can be received to empty channel (2, 1). Agent
2 is allowed to move into tf and to empty the channel (1, 2) as soon as it
receives a letter c← qf for some c.

As agent 2 modifies a configuration of the Turing machine locally and
thereby needs to store only a subword of a configuration of constant length,
finitely many states are sufficient so that, in fact, we deal with a CFM (that
is even locally accepting). �

Observe that MSCs of the form depicted in Fig. 8.6 reflect the whole
complexity of MSCs. Their structure will be used more often in this book. In
particular, it constitutes a means to embed grids into MSCs and to transport
results from the grid into the MSC setting.

Theorem 8.10. The following problems are undecidable:

(a) Input: A ∈ CFM. Question: Is A safe?
(b) Input: A ∈ CFM. Question: A ∈ ∀CFM?
(c) Input: A ∈ CFM and B ≥ 1. Question: Is A ∀B-bounded?

128 8 Communicating Finite-State Machines

Note that the last two problems remain undecidable if we ask for existential
boundedness.

Exercise 8.11. Prove Theorem 8.10. You may use Theorem 8.9.

Theorem 8.12. The following problems are decidable:

(a) Input: A ∈ safe-CFM and B ≥ 1. Question: Is A ∀B-bounded?
(b) Input: A ∈ ∀∀CFM. Question: Is L(A) empty?

Exercise 8.13. Prove Theorem 8.12.

8.4 Lossy Channel Systems

Under certain circumstances, communication through channels can be as-
sumed to be unreliable so that messages, once they are sent, might get lost
during their transmission, without notification of the receiving agent.

Definition 8.14 (Lossy Channel System). A lossy channel system (LCS)
(over Ag) is a structure ((Ai)i∈Ag ,D, sin , F) whose components correspond to
those of a CFM, i.e.,

• D is a nonempty finite set of synchronization messages,
• for each i ∈ Ag, Ai is a pair (Si, ∆i) with Si a nonempty finite set of

states and ∆i ⊆ Si × Γi ×D × Si,
• sin ∈

∏
i∈Ag Si is the global initial state, and

• F ⊆
∏

i∈Ag Si is the set of global final states.

The behavior of an LCS is the same as that of a CFM except that it is
henceforth considered relative to LMSCs: let A = ((Ai)i∈Ag ,D, sin , F), Ai =
(Si, ∆i), be an LCS and M = (V, � λ) ∈ LMSC. Again, a run of A on M is a
pair (ρ, µ) of a mapping ρ : V →

⋃
i∈Ag Si with ρ(u) ∈ SAg(u) for each u ∈ V

and a mapping µ : V → D such that

• for any u, v ∈ V with u �c v, µ(u) = µ(v), and

• for any u ∈ V , (sourcesin

(M,ρ)(u)[Ag(u)], λ(u), µ(u), ρ(u)) ∈ ∆Ag(u).

We call (ρ, µ) accepting if finals
in

(M,ρ) ∈ F and denote by L(A) := {M ∈ LMSC |
there is an accepting run of A on M} the language of A. Finally, let LCS stand
for {L ⊆ LMSC | there is an LCS A such that L(A) = L}.

To adopt a rather operational view of an LCS, we will again employ a
global transition relation. Consider an LCS A = ((Ai)i∈Ag ,D, sin , F), Ai =
(Si, ∆i). We transfer the definitions of ConfA and �A ⊆ ConfA×ConfA from
(finite) CMs to the current setting and moreover let �lcs

A ⊆ ConfA×ConfA be

the union of �A and
�
�A where

�
�A := {((s, χ), (s′, χ′)) ∈ ConfA × ConfA |

s = s′ and there are a channel (i, j) ∈ Ch, a message m ∈ D, and words
w1, w2 ∈ D

∗ such that χ((i, j)) = w1mw2 and χ′ = χ[(i, j)/w1w2]}.

8.4 Lossy Channel Systems 129

s0

s1

s2

t0

t1

t2

1!2,♦

2?1,�

1?2,♦

2!1,♦1!2, � 1?2,♦

2?1,♦ 2!1,♦

A1: A2:

. . .

. . .

♦�♦

♦

�lcs

A

s0

s1

s2

t0

t1

t2

1!2,♦

2?1, �

1?2,♦

2!1,♦1!2, � 1?2,♦

2?1,♦ 2!1,♦

A1: A2:

. . .

. . .

♦♦

♦

Fig. 8.7. The global transition relation of an LCS

1!2

1!2

1!2

2?1

2?1

M1

1!2

1!2

1!2

2?1

2?1

M2

Fig. 8.8. Two LMSCs whose sets of linearizations are not disjoint

The latter relation,
�
�A, reflects the operational faulty communication be-

havior of A and allows the system to remove messages from a queue. It is
illustrated by Fig. 8.7. In contrast, the former relation, �A, is concerned with
sending and receiving messages just as this was also the case when considering

perfect channels. Thus, concerning �lcs
A = �A ∪

�
�A, a configuration may

henceforth lose, at any time of execution, an arbitrary message that is waiting
in a channel for being received.

To establish a correspondence between a set of LMSCs and a word
language is not straightforward, as two distinct LMSCs may share lin-
earizations, i.e., a linearization is no longer exclusive to one single dag
when going over from MSCs to LMSCs. Considering Fig. 8.8, for example,
(1!2)(1!2)(1!2)(2?1)(2?1) is a linearization of both M1 and M2. Thus, we can
no longer uniquely infer from a set of linearizations a corresponding collection
of LMSCs. We may however establish the following characterization of the
emptiness problem for LCSs in terms of their operational behavior.

130 8 Communicating Finite-State Machines

Lemma 8.15. Let A = ((Ai)i∈Ag ,D, sin , F) be an LCS. We have L(A) �= ∅
iff ((sin , χε), (s, χε)) ∈ (�lcs

A)∗ for some s ∈ F .

Exercise 8.16. Show Lemma 8.15.

Recall that assuming reliable channels leads to an undecidable emptiness
problem (cf. Theorem 8.9). Surprisingly, emptiness is decidable for LCSs,
though it has nonprimitive recursive complexity [86].

Theorem 8.17 ([1]). The following problem is decidable:

Input: LCS A.

Question: Is L(A) empty?

8.5 Non-Fifo Channel Systems

Though, for simplicity, we abstract in most sections from message contents,
they can be easily included without major effort. In particular, a commu-
nicating finite-state machine over (Ag, Λ) (for a message alphabet Λ) is de-
fined to be a structure A = ((Ai)i∈Ag ,D, sin , F) such that D, Ai = (Si, ∆i),
sin , and F are defined as in the case of a CFM over Ag except that
∆i ⊆ Si × Γi(Ag, Λ) × D × Si. Thus, the only difference between a CFM
over Ag and a CFM over (Ag , Λ) is the transition relation, which is adapted
either to actions from Γi(Ag) or to actions from Γi(Ag, Λ). Henceforth, A may
run on (non-fifo) MSCs M = (V, �, λ) ∈ MSC→↘(Ag, Λ). Namely, a run of A
on M is a pair (ρ, µ) of mappings ρ : V →

⋃
i∈Ag Si with ρ(u) ∈ SAg(u) for

each u ∈ V and µ : V → D such that, as usual,

• for any u, v ∈ V with u �c v, µ(u) = µ(v), and

• for any u ∈ V , (sourcesin

(M,ρ)(u)[Ag(u)], λ(u), µ(u), ρ(u)) ∈ ∆Ag(u).

We call (ρ, µ) accepting if finals
in

(M,ρ) ∈ F . Thus, the definition of a run is the
same as in the case of a CFM (or LCS) over Ag . Moreover, we get the notions
of the (non-fifo) language L(A) of A and of the corresponding language class
CFM→↘(Ag, Λ) in the canonical manner.

Hence, the languages from CFM→↘(Ag , Λ) may contain MSCs that are
non-fifo. Considering CFMs over (Ag, Λ) relative to MSC(Ag, Λ), however,
we obtain the class CFM(Ag , Λ) ⊆ 2MSC(Ag,Λ), whose languages contain only
fifo-dags.

So let us determine a global transition relation suitable for CFMs over
(Ag , Λ) relative to MSC→↘(Ag , Λ). Rather than with respect to a channel (i, j),
a configuration keeps track of the channel contents with respect to (i, j) and
a message from Λ. Otherwise, the behavior of a CFM over (Ag , Λ) is basically
the same as that of a CFM over Ag . In turn, a CFM over Ag might be seen
as a special case of a CFM over (Ag , Λ) where Λ is a singleton set.

8.6 CMs vs. Product MSC Languages 131

Let A = ((Ai)i∈Ag ,D, sin , F), Ai = (Si, ∆i), be a CFM over (Ag, Λ).
The set of (non-fifo) configurations of A, denoted by ConfA, is the cartesian
product SA × CA where CA := {χ | χ : (Ch × Λ) → D∗} is the set of channel
contents of A. The (non-fifo) global transition relation of A, =⇒A ⊆ ConfA ×
Γ (Ag , Λ)×D × ConfA, is given as follows:

• ((s, χ), i!aj, m, (s′, χ′)) ∈ =⇒A if
– (s[i], i!aj, m, s′[i]) ∈ ∆i,
– χ′ = χ[((i, j), a)/m · χ((i, j), a)], and
– for all k ∈ Ag \ {i}, s[k] = s′[k].

• ((s, χ), i?aj, m, (s′, χ′)) ∈ =⇒A if there is a word w ∈ D∗ such that
– (s[i], i?aj, m, s′[i]) ∈ ∆i,
– χ((j, i), a) = w ·m,
– χ′ = χ[((j, i), a)/w], and
– for all k ∈ Ag \ {i}, s[k] = s′[k].

The initial configuration, the set of final configurations, and the word language
Lword(A) ⊆W(Γ (Ag , Λ)) of A are obtained in the usual manner. The reader
may verify the following correspondence:

Lemma 8.18. For any CFM A over (Ag , Λ), we have Lword(A) = Lin(L(A)).

Exercise 8.19. Determine a global transition relation that is suitable for
CFMs over (Ag , Λ) relative to MSC(Ag , Λ) (thus, modeling a fifo behavior).

If not otherwise explicitly stated, we deal, further on, with CFMs and
MSCs over Ag , abstracting from message contents.

8.6 CMs vs. Product MSC Languages

For the moment, let us put aside LCSs and non-fifo systems, and let us again
address CMs. We will identify the automata model that corresponds precisely
to the class of (weak) product MSC languages. It will provide the basis for
further expressiveness results in the scope of product MSC languages.

Lemma 8.20 ([4]).
P0 = L(1-CM�)

Corollary 8.21.
P = L(1-CM)

Proof. “⊇”: According to Lemma 8.8, a 1-CM can be transformed into an
equivalent extended locally accepting 1-CM ((Ai)i∈Ag ,D, Sin , F), which then
recognizes

⋃
s∈Sin L(((Ai)i∈Ag ,D, s, F)), i.e., the finite union of languages that

are each accepted by some locally accepting 1-CM. The assertion follows from
Lemma 8.20.

132 8 Communicating Finite-State Machines

“⊆”: Similarly, any MSC language L ∈ P is the union of finitely many lan-
guages L1, . . . , Ln ∈ P

0, which, according to Lemma 8.20, are recognized by
locally accepting 1-CMs A1, . . . ,An (each employing, say, ♦ as synchroniza-
tion message) with global initial states s1, . . . , sn and sets of global final states
F 1, . . . , Fn, respectively, where, for each k ∈ {1, . . . , n}, F k =

∏
i∈Ag F k

i for

some sets F k
i ⊆ Sk

i (let Sk
i be the set of i-local states of Ak). Without loss of

generality, A1, . . . ,An have mutually distinct local state spaces. The extended
locally accepting 1-CM recognizing L processwise merges the state spaces and
transitions of A1, . . . ,An, employs {s1, . . . , sn} being the set of global initial
states, and, similarly to the proof of Lemma 8.8,

∏
i∈Ag

⋃
k∈{1,...,n} F k

i being
the set of global final states. The assertion then follows from Lemma 8.8. �

8.7 CFMs vs. Regular MSC Languages

Henriksen et al. and Kuske provide an automata-theoretic characterization of
the class of regular MSC languages in terms of (strongly) ∀-bounded CFMs.

Theorem 8.22 ([45, 56]).

R = L(∀CFM) = L(∀∀CFM)

In the framework of regular MSC languages, restricting to one synchro-
nization message (and a local acceptance condition) on the automata side
then means to restrict to (weak, respectively) product languages:

Lemma 8.23.
RP0 = L(1-∀CFM�)

Proof. “⊇”: According to Lemma 8.20, the language of a CFM A ∈ 1-∀CFM�

is a weak product language, and, according to Theorem 8.22, Lword (A) =
Lin(L(A)) constitutes a regular word language over Γ .

“⊆”: Let L ∈ RP0 and, for i ∈ Ag , let Ai = (Si, ∆i, s
in
i , Fi) be a finite

automaton over Γi satisfying L(Ai) = L � i := {M � i | M ∈ L}. Consider
the CFM A = ((A′

i)i∈Ag ,D, sin , F) with D = {♦}, sin = (sin
i)i∈Ag , F =∏

i∈Ag Fi, and A′
i = (Si, ∆

′
i) where, for any s, s′ ∈ Si and σ ∈ Γi, (s, σ,♦, s′) ∈

∆′
i if (s, σ, s′) ∈ ∆i. We claim that both A ∈ 1-∀CFM� and L(A) = L. First,

it is easy to see that L ⊆ L(A). Now assume an MSC M to be contained
in L(A). For each i ∈ Ag , M � i ∈ L(Ai) = L � i so that there is an MSC
M′ ∈ L with M′ � i = M � i. From the definition of P0, it then immediately
follows that M is contained in L, too. Clearly, A is finite, locally accepting,
and ∀-bounded. �

We now show that Lemma 8.23 does not hold if we adopt the definition of
strong universal boundedness proposed by Henriksen et al. (whereas Theorem
8.22 still holds).

8.8 CFMs vs. ACAs and EMSO Logic 133

Lemma 8.24.
RP0 � L(1-∀∀CFM�)

Proof. It remains to show strictness. Let L = {M1}
∗∪{M2}

∗ with M1 and M2

given by Fig. 8.9, and suppose there is a CFM A ∈ 1-CFM� with L(A) = L.
Then, for each natural number n ≥ 1, the word

(1!2)2
(
(3!1)(1?3)(1!2)2(2?1)(2!3)(3?2)

)n
∈W(Γ)

leads from the initial configuration of A via =⇒A (neglecting the synchro-
nization message) to some configuration (s, χ) with χ((1, 2)) = n + 3. Thus,
A cannot be strongly ∀-bounded. Nevertheless, L is contained in RP0 and
∀2-bounded. �

1 2 3

M1

1 2 3

M2

Fig. 8.9. Universal boundedness vs. strong boundedness

However, if we restrict to safely realizable MSC languages, Lemma 8.23 holds
for both definitions of universal boundedness, as safely realizable languages
can be recognized by CMs in which no deadlock configuration is reachable,
i.e., we need not pay attention to configurations that do not contribute to the
recognized language anyway.

Corollary 8.25.
RP = L(1-∀CFM)

The proof of Corollary 8.25 is analogous to that of Corollary 8.21.

8.8 CFMs vs. ACAs and EMSO Logic

We now turn towards one of the central results of this book, which establishes
the relationship between CFMs and EMSO logic over MSCs. In fact, any
EMSO-definable MSC language is implementable as a CFM and, vice versa,
any MSC language recognized by some CFM has an appropriate EMSO coun-
terpart. However, according to Theorem 5.45 and Corollary 5.32, it suffices to
establish the equivalence of CFMs and ACAs relative to MSC.

134 8 Communicating Finite-State Machines

Lemma 8.26.
CFM = ACAMSC

Proof. “⊆”: We are given a CFM ((Ai)i∈Ag ,D, sin , F), Ai = (Si, ∆i), which

shall be transformed into an ACA A′ = (Q, ∆, T, F ′) over Γ̃ such that
LMSC(A′) equals L(A). The set of states of A′, Q, is the cartesian prod-
uct of

⋃
i∈Ag Si and D, i.e., a state of A′ incorporates both a local state of

A and a synchronization message. This is because, unlike a CFM, an ACA
is not capable of sending and receiving messages. The broadcast and recep-
tion of a message m in a CFM will therefore be mimicked by an ACA by
assigning to communicating nodes only those states whose message compo-
nents both equal m. More precisely, ∆ contains a collection of transitions for
any local transition from

⋃
i∈Ag ∆i. Namely, a (sending) local CFM transition

(s, i!j, m′, s′) ∈ ∆i is represented by the collection of ACA transitions

s, m

s′, m′

iθk

i!j

with m ∈ D, k ∈ Ag \ {i}, and θ ∈ {!, ?}. (Note that we might just have
required that the upper left node is labeled with an action σ ∈ Γi instead of
iθk.) In addition, if s = sin [i], ∆ will also employ the following transition:

s′, m′ i!j

A (receiving) local CFM transition (s, i?j, m′, s′) ∈ ∆i becomes

s, m

s′, m′

r, m′iθk

i?j

j!i

and, if s = sin [i], it also becomes

s′, m′

r, m′

i?j

j!i

8.8 CFMs vs. ACAs and EMSO Logic 135

where m ranges over D, k ∈ Ag \ {i}, θ ∈ {!, ?}, and r ∈ Sj .
Clearly, T (σ, q) = ∅ for any pair (σ, q) ∈ Γ × Q. Finally, q ∈ (Q ·∪ {ı})Ag

is contained in F ′ if there is a global final state s ∈ F of A such that, for any
i ∈ Ag , both q[i] = ı implies s[i] = sin [i] and q[i] ∈ Q implies q[i] = (s[i], m)
for some m ∈ D.

“⊇”: Now suppose we are given an ACA A = (Q, ∆, T, F) over Γ̃ . We
build in the following a CFM A′ = ((Ai)i∈Ag ,D, sin , F ′), Ai = (Si, ∆i), such
that L(A′) = LMSC(A). Without loss of generality, we may assume that A
is state separated and, moreover, that A is adjusted to MSC, i.e., any tran-
sition from ∆ matches one of the four transition types from the other proof
direction above except that states are no longer pairs of a message and a state
but elements from Q. We observe that a transition of A implies some global
knowledge about the sending and the (distinct) receiving agent, i.e., about
the states associated with sending and corresponding receiving nodes. Such
global knowledge will be mimicked by the exchange of states through channels
as follows: suppose ∆ contains a transition {(iθk, q), (j!i, r)} −→ (i?j, q′). To
emulate the transition in A′, agent j will send r as a message to agent i to let
him know that he is currently in state r. Receiving this message, agent i may
then take the transition (q, i?j, r, q′), thus, making sure that his part matches
a valid transition. Accordingly, we set D to be Q and, for any i ∈ Ag , Si to
be Q ·∪ {ı}.

For any i ∈ Ag , the set ∆i will include a local transition (q, i?j, r, q′) ∈
Si × Γ r

i ×D × Si if

• ∆ contains {(iθk, q), (j!i, r)} −→ (i?j, q′) for some k ∈ Ag \ {i} and θ ∈
{!, ?} or

• ∆ contains {(j!i, r)} −→ (i?j, q′) and q = ı.

Moreover, for any i ∈ Ag , ∆i will include a transition (q, i!j, r, q′) ∈ Si×Γ s
i ×

D × Si if r = q′ and

• ∆ contains {(iθk, q)} −→ (i!j, q′) for some k ∈ Ag \ {i} and θ ∈ {!, ?} or
• ∆ contains ∅ −→ (i!j, q′) and q = ı.

Finally, sin , the global initial state of A′, is set to be (ı)i∈Ag and F ′, the set
of final states of A′, is set to be F . We easily verify that then A′ is equivalent
to A relative to MSCs. �

Altogether, we may say that

Communicating finite-state machines are
Asynchronous cellular automata relative to MSC.

Similarly, we can establish the expressive equivalence of LCSs and ACAs rel-
ative to LMSCs:

Lemma 8.27.
LCS = ACALMSC

136 8 Communicating Finite-State Machines

Thus, it is justified to say that

Lossy channel systems are
Asynchronous cellular automata relative to LMSC.

Exercise 8.28. Show Lemma 8.27.

Exercise 8.29. Show that MSC �∈ LCS.

Exercise 8.30. Show that LCS � ACAT LMSC.

From the characterizations of CFMs and LCSs in terms of ACAs, we obtain
the following (un)decidability results for ACAs:

Corollary 8.31. The following problem is undecidable:

Input: ACA A over Γ̃ .

Question: Is LMSC(A) empty?

Corollary 8.32. The following problem is decidable:

Input: ACA A over Γ̃ .

Question: Is LLMSC(A) empty?

The following theorem, which might be considered to be the main result of this
chapter, follows directly from Lemma 8.26, Theorem 5.45, and Corollary 5.32.

Theorem 8.33.
CFM = EMSOMSC

Regarding CFMs over (Ag , Λ) (with potential non-fifo behavior), we easily
obtain a precise correspondence with their EMSO logic, too:

Theorem 8.34. Let Λ be an alphabet.

(a) CFM→↘(Ag, Λ) = EMSO(Γ (Ag, Λ))MSC→↘(Ag,Λ)

(b) CFM(Ag , Λ) = EMSO(Γ (Ag, Λ))MSC(Ag,Λ)

From Theorem 8.33, we can deduce that the satisfiability problem for
EMSO sentences and the universality problem for Σ2-sentences over MSC are
undecidable.

Theorem 8.35. The following two problems are undecidable:

(a) Input: Sentence ϕ ∈ EMSO(Γ). Question: Is LMSC(ϕ) not empty?
(b) Input: Sentence ϕ ∈ Σ2(Γ). Question: LMSC(ϕ) = MSC?

8.8 CFMs vs. ACAs and EMSO Logic 137

Proof. Using Theorem 8.9 and Theorem 8.33, we get Theorem 8.35(a). The-
orem 8.35(b) follows from an easy reduction from the satisfiability problem:
there is an MSC satisfying a given EMSO sentence ϕ iff not any MSC satisfies
the dual of ϕ, which can be written as a Σ2-sentence. �

Exercise 8.36. Show that universality for EMSO sentences over MSC is un-
decidable.

We have (implicitly) shown that one can effectively transform a CFM into
an EMSO sentence that is equivalent to the CFM over MSCs. Let us however
give an explicit transformation from CFMs directly into an EMSO formula
using a slightly different technique than we employed proving Lemma 5.38. It
allows such a transformation without knowing the structure of local automata
in detail, which might be given just by an EMSO sentence interpreted over
words.

So let N ≥ 1 and let A = ((Ai)i∈Ag , {1, . . . , N}, sin , F), Ai = (Si, ∆i), be
a CFM. We assume F �= ∅. Note that Ai, once equipped with an initial state
s ∈ Si and a set of final states Fi ⊆ Si, can be considered as a finite word
automaton over Γi × {1, . . . , N} generating a regular word language. In case
that N = 1, we can even understand Ai to recognize a word language over Γi

ignoring the respective message component in the transition relation ∆i.
Our aim is to exhibit an EMSO(Γ)-sentence Ψ such that LMSC(Ψ) = L(A).

Recall that the class of word languages that are EMSOW-definable coincides
with the class of regular word languages. Clearly, the language of A equals⋃

s∈F L(((Ai)i∈Ag , {1, . . . , N}, sin , {s})). So let, for each global final state s ∈
F and each agent i ∈ Ag ,

ϕs,i = ∃Xs,i
1 . . .∃Xs,i

ns,i
ψs,i(Xs,i

1 , . . . , Xs,i
ns,i

)

be an EMSO(Γi × {1, . . . , N})-sentence with first-order kernel ψs,i such that
LW(Γi×{1,...,N})(ϕ

s,i) is the language of the finite automaton Ai with initial
state sin [i] and set of final states {s[i]}. The formula Ψ now requires the
existence of an assignment of synchronization messages to the events that, on
the one hand, respects that communicating events have to be suitably labeled
and, on the other hand, meets the restrictions imposed by the formulas ϕs,i

for at least one final state s ∈ F . It is given by

Ψ = ∃X1 . . .∃XN ∃X(
partition(X1, . . . , XN)

∧ consistent(X1, . . . , XN)

∧
∨

s∈F

∧
i∈Ag agents,i(X1, . . . , XN , Xs,i

1 , . . . , Xs,i
ns,i

)
)

where X is the block of all the second-order variables Xs,i
i .

The formula partition(X1, . . . , XN) ensures that the variables X1, . . . , XN

define a mapping from the set of events of an MSC to the set of synchroniza-
tion messages {1, . . . , N}.

138 8 Communicating Finite-State Machines

Then, consistent(X1, . . . , XN) guarantees that the mapping is consistent,
i.e., a send event and its corresponding receive event are equally labeled with
respect to the alphabet of synchronization messages:

consistent(X1, . . . , XN) = ∀x∀y
(
x �c y →

∨
i∈{1,...,N}

(x ∈ Xi ∧ y ∈ Xi)
)

For s ∈ F and i ∈ Ag , the formula agents,i(X1, . . . , XN , Xs,i
1 , . . . , Xs,i

ns,i
)

ensures that the total order that agent i induces with respect to an MSC
corresponds to what the word automaton Ai with initial state sin [i] and set
of final states {s[i]} recognizes. It is defined to be the projection ||ψs,i||i of
the formula ψs,i on i and derived inductively. In particular (recall that ψs,i is
the first-order kernel of a formula interpreted over words (V, �, λ) ∈ W(Γi ×
{1, . . . , N}) with λ : V → Γi × {1, . . . , N}),

• ||λ(x) = (σ, n)||i = (λ(x) = σ) ∧ x ∈ Xn,
• ||x ∈ X||i = x ∈ X,
• ||x � y||i = x �i y,
• ||∃xϕ||i = ∃x(Ag(x) = i ∧ ||ϕ||i), and
• ||∀xϕ||i = ∀x(Ag(x) = i→ ||ϕ||i),

while the remaining derivations are defined canonically. Note that, though
Ψ allows the set variables Xs,i

i to range over arbitrary subsets of events, in
||ψs,i||i, their interpretation is restricted to elements of agent i.

8.9 CFMs vs. Graph Acceptors

We have implicitly shown that CFM and GAMSC coincide. As in most settings,
we cannot generally remove occurrence constraints from graph acceptors over
MSCs. However, we may restrict to certain MSC languages:

Lemma 8.37. For any language L ⊆MSC including 1MSC, we have

L ∈ L(CFM�) implies L ∈ 1-GA−
MSC

Proof. We follow the proofs of Theorem 5.49 and Lemma 8.26. So let A =
((Ai)i∈Ag ,D, sin , F), Ai = (Si, ∆i) and F =

∏
i∈Ag Fi, be a locally accepting

CFM such that a state s ∈ Fi is exclusive to a Γi-maximal event. We easily
build a graph acceptor B = (Q, R, S,Occ) over Γ such that Q = (

⋃
i∈Ag Si)×

D, R = 1, LMSC(B) = L(A), and Occ is of the form∧
i∈Ag

(∨
q∈Fi×D, H∈Sq

H ≥ 1 ∨
∧

sin [i]∈Fi, σ∈Γi, H∈Sσ

¬ (H ≥ 1)
)

Provided sin ∈ F , Occ can be assumed to be true if we remove any sphere
from S that, with respect to some i ∈ Ag , has a maximal sphere center that
is not labeled with a state from Fi. �

8.9 CFMs vs. Graph Acceptors 139

Altogether, we observe the following correspondence:

Messages and local states in CFMs correspond to con-
trol states of graph acceptors, global final states corre-
spond to occurrence conditions.

Note that EP0 ⊆ L(CFM�) so that, in particular, the above result holds for
weak EMSO-definable product MSC languages. The class L(CFM�) is not only
interesting because of Lemma 8.37. It is the basis for an algorithm that, given
a locally cooperative high-level MSC, yields a corresponding locally accepting
CFM [37] (cf. also Theorem 8.7). Furthermore, if we restrict to connected
MSCs that share at least one agent, then L(CFM�) and EMSOMSC coincide.

Lemma 8.38. Let L be an MSC language. If there is p ∈ Ag such that, for
any M ∈ L \ {1MSC}, both p ∈ Ag(M) and M is connected, then

L ∈ L(CFM�) iff L ∈ L(CFM)

Proof. Let A = ((Ai)i∈Ag ,D, sin , F), Ai = (Si, ∆i), be a CFM and p ∈ Ag
such that, for any M ∈ L(A) \ {1MSC}, p ∈ Ag(M) and CG(M) is connected.
We are interested in a locally accepting CFM A′ = ((A′

i)i∈Ag ,D
′, s′0, F

′),
A′

i = (S′
i, ∆

′
i), such that L(A′) = L(A). Let us first describe the idea behind

the construction of A′. Each agent will basically guess both a global final state
and a connected communication graph. In addition, a component i of a global
final state might be −, which shall indicate that i is not expected to move at
all. In that case, i is not a node of the communication graph.

Once a global final state and a communication graph are guessed, they
cannot be changed anymore. Furthermore, they are passed to communica-
tion partners, which, in turn, are only allowed to reply the request if they
have made the same choice. Simultaneously, a set of previous communication
partners is locally updated and, at the end of a run, compared with the com-
munication graph at hand. Namely, in a local final state of agent i, the set of
previous communication partners of i must coincide with the set of i’s direct
neighbors in the communication graph.

Let S−
A abbreviate

∏
i∈Ag(Si ·∪ {−}) and let F− be the set of tuples

s ∈ S−
A for which there is f ∈ F such that s coincides with f in at least two

components and, for all other components i ∈ Ag , we have both s[i] = − and
f [i] = sin [i]. Then, A′ is given in detail as follows:

• for any i ∈ Ag , S′
i =

(
Si × F− × (

∏
i∈Ag 2Ag)× 2Ag

)
·∪ {ιi}

(apart from the i-local initial state ιi, the first component of an i-local
state simulates A, while the second component holds a guessed global fi-
nal state, which, once chosen, cannot be changed anymore; the symbol
“−” shall indicate that the respective agent is not expected to move at
all; the third and fourth component specify further communication obliga-
tions and the set of former communication partners, respectively; hereby,

140 8 Communicating Finite-State Machines

a communication graph (Ag(M),Arcs) of some MSC M will be repre-
sented by its undirected variant, namely as a tuple ϑ̄ ∈

∏
i∈Ag 2Ag where,

for any i, j ∈ Ag , j ∈ ϑ̄[i] iff both {i, j} ⊆ Ag(M) and (i, j) ∈ Arcs or
(j, i) ∈ Arcs),

• D′ = D × F− ×
∏

i∈Ag 2Ag

(again, the first component of a message aims at simulating the origi-
nal CFM, while the remaining components ensure that the guess about a
global final state and further communication obligations are respectively
transferred to the communication partner),

• for θ ∈ {!, ?}, (ιi, iθj, (d, d̄, ϑ̄1), (s
′, s′, ϑ̄′, ϑ′)) ∈ ∆′

i if
– (sin [i], iθj, d, s′) ∈ ∆i

(of course, the initial local transition must correspond to some initial
local transition of A),

– ϑ̄′ represents a connected communication graph such that ϑ̄′[p] �= ∅
and, for any k ∈ Ag , s′[k] = − iff ϑ̄′[k] = ∅
(agent i assumes both a global final state s′ and a communication
structure ϑ̄′ and propagates s′ along ϑ̄′ to guarantee an agreement on
s′),

– (d̄, ϑ̄1) = (s′, ϑ̄′),
– ϑ′ = {j}

(the set of communication partners of i is initialized to {j}),
– j ∈ ϑ̄′[i] and, consequently, i ∈ ϑ̄′[j]

(however, the transition can only be taken if this is intended by ϑ̄′),
• for θ ∈ {!, ?}, ((s, s, ϑ̄, ϑ), iθj, (d, d̄, ϑ̄1), (s

′, s′, ϑ̄′, ϑ′)) ∈ ∆′
i if

– (s, iθj, d, s′) ∈ ∆i

(as above, a transition has to conform to the corresponding local tran-
sition relation of A),

– (s, ϑ̄) = (d̄, ϑ̄1) = (s′, ϑ̄′)
(as mentioned above, part of the local state cannot be changed any-
more; to guarantee an agreement on the global final state s′, that part
is passed/received to/from i’s communication partner j, respectively),

– ϑ′ = ϑ ∪ {j}
(j is added to the set of i’s communication partners so far),

– j ∈ ϑ̄[i] and, consequently, i ∈ ϑ̄[j]
(j is only a valid communication partner of j if this is provided by the
communication structure that is represented by ϑ̄),

• s′0 = (ιi)i∈Ag

(at the very beginning, no agent has made a guess about global final states
and the communication structure), and

• F ′ =
∏

i∈Ag F ′
i where, for any i ∈ Ag , F ′

i contains any tuple (s, s, ϑ̄, ϑ) such

that both s = s[i] and ϑ = ϑ̄[i], and it contains ιi iff i �= p or 1MSC ∈ L
(unless it did not make any move, agent i has to agree with the global final
state and, according to ϑ̄, should have communicated with all the agents
it was supposed to do). �

8.9 CFMs vs. Graph Acceptors 141

Exercise 8.39. Show that, if |Ag | ≤ 3, then L(CFM�) = L(CFM).

Lemma 8.40.
1-GAMSC \ GA

−
MSC

�= ∅

Proof. Due to Lemma 8.37 and Exercise 8.39, we cannot expect to find a
corresponding language that contains 1MSC and is defined over only three
agents. However, it is easy to see that the language {G, I,1MSC} with G and
I taken from Fig. 7.6 on page 99 is not contained in GA−

MSC
, though it can

be recognized by some graph acceptor with 1-spheres and with occurrence
constraints. The argument is similar to the one for proving Lemma 3.23. �

Theorem 8.41. In general, MSO[≤]MSC(Ag,Λ) and EMSOMSC(Ag,Λ) are in-
comparable with respect to inclusion.

Proof. We provide an MSC language that is EMSOMSC- but not MSO[≤]MSC-
definable (cf. [56]). It does not rely on message contents, which are therefore
omitted. So consider the MSC language L that contains the MSCs M(m, n),
m, n ∈ IN, of the form depicted in Fig. 8.10. Note that, for any (V, �, λ) ∈ L, ≤
is a total order. It is easy to find a CFM recognizing L so that L is EMSOMSC-
definable. This is left to the reader as an exercise. Now suppose L to be
MSO[≤]MSC-definable, too. Then, Lin(L) is MSO(Γ)[≤]Lin(T)-definable where
T is the set of totally ordered MSCs. Thus, there is, according to Theorem
4.10, a word language L′ ∈ FA(Γ) such that L′ ∩ Lin(T) = Lin(L). Consider

(1!3)m(1!4)(4?1)(4!1)(1?4)(1!3)n

(1!2)(2?1)(2!3)(3?2)
(3?1)m(3!4)(4?3)(4!3)(3?4)(3?1)n ∈ L′,

which corresponds to the MSC from Fig. 8.10. If m and n are sufficiently
large, we can, due to pumping arguments for regular word languages, find a
word

(1!3)(m+k)(1!4)(4?1)(4!1)(1?4)(1!3)n

(1!2)(2?1)(2!3)(3?2)
(3?1)m(3!4)(4?3)(4!3)(3?4)(3?1)(n+k) ∈ L′

with k ≥ 1, which, though it is a valid linearization of some totally ordered
MSC, is not in accord with Fig. 8.10 and, therefore, contradicts our premise.

Conversely, set Ag to be {1, 2} and Λ to be {a, b, c}. Consider the picture
language L ⊆ P(Λ) from the proof of Theorem 3.28 and recall that any picture
from L can be (uniquely) partitioned into pictures G, C, and H such that the
sets of different column labelings of G and H coincide. The unique partition
of the picture from Fig. 3.6 is illustrated in Fig. 3.7 on page 32. Such a
picture can be encoded as an MSC over (Ag , Λ) as follows. In the initialization
phase, agent 1 sends arbitrarily many messages to agent 2. Thereupon, any
message received is acknowledged immediately until one of the agents stops
acknowledging.

142 8 Communicating Finite-State Machines

1 2 3 4

...m
n

...n
n

...

o
m

...

o
n

Fig. 8.10. An MSC language that is not MSO[≤]MSC-definable

Those send events that take place during the initialization phase corre-
spond to the first column of the picture to be encoded and are accordingly
labeled. Thus, the initialization phase also constitutes the picture’s column
length, say n in the following. The second column is then given by the first
n send events on the second process line, the third column by the second n
send events of agent 1 and so on. In this sense, the picture from Fig. 3.6 gives
rise to the MSC from Fig. 8.11. Note that only a send event corresponds to
some point in the picture at hand. We omit here a formal definition of such a
folding, as, though slightly modified, it is given in the following chapter.

Now suppose the MSC language L′, which shall consist of the empty MSC
1MSC and all foldings of pictures from L, to be the language of some CFM.
Then, due to Lemma 8.37 and Exercise 8.39 (both adapted to MSCs over
(Ag , Λ)), there is a graph acceptor B = (Q, 1, S,Occ) over Γ (Ag, Λ) without
occurrence constraints such that LMSC(Ag,Λ)(B) = L′. An accepting run of B,
as argued in the proof of Theorem 3.28, has to transfer all the information it
has about the upper part of the MSC (which corresponds to the first partition
of the underlying picture) along the middle part of size 2n to the lower section.
However, as there are 22n

− 1 possible distinct nonempty sets of words over
{a, b} of length n but only |Q|2n possible assignments of states to the middle
part, we can, provided n is sufficiently large, find an accepting run of B on
some MSC whose upper and lower part does not fit together in the sense
stipulated by L.

It remains to show that L′ is MSO[≤]MSC(Ag,Λ)-definable. First of all, the
set of all foldings of pictures from L is MSO[≤]MSC(Ag,Λ)-definable. The cor-
responding formula basically claims the existence of a chain that starts at the

8.9 CFMs vs. Graph Acceptors 143

a

b

b

a

b

b

b

a

b

b

a

b

c

c

c

a

b

b

a

b

b

b

a

b

Fig. 8.11. Folding a picture

minimal event and alternates between the agents 1 and 2. Moreover, both ≤1

and ≤2, which are not to be confused with the orderings induced by the agents
but correspond to walking in the grid from top to bottom and from left to
right, respectively, are MSO[≤]-definable with respect to MSCs. For example,
x ≤2 y, which stands for proceeding from left to right in the corresponding
grid, asks for the existence of a chain starting at x, iterating between 1 and
2, and ending in y. When defining ≤1, the main difficulty is to determine a
predicate that marks those vertices x that correspond to the end of a column.
Again, this can be reduced to the existence of a chain starting at x and ending
in the greatest event of the folding. Filling in the proof details yields a defining
formula for L′. �

144 8 Communicating Finite-State Machines

Note that we will see in the next chapter (Corollary 9.9) that even the classes
MSO[≤]MSC(Ag) and EMSOMSC(Ag) (thus, without any message contents) are
incomparable with respect to inclusion.

8.10 CFMs vs. EMSO-Definable Product Languages

One might expect that, implementing (weak) EMSO-definable product lan-
guages, one can do with only one extra message. But appearances are decep-
tive:

Lemma 8.42. We have the following strict inclusions:

(a) L(1-CFM�) � EP0,
(b) L(1-CFM) � EP.

Proof. Inclusion of (a) follows from Lemma 8.20 and Theorem 8.33. Inclusion
of (b) then proceeds as the proof for Corollary 8.21. Let us turn towards
strictness. For natural numbers m, n ≥ 1, let the MSC M(m, n) over {1, 2}
be given by its projections M(m, n) � 1 = (1!2)m ((1?2)(1!2))n and M(m, n) �

2 = ((2?1)(2!1))n (2?1)m. The MSC M(3, 2) is depicted in Fig. 8.12. Now
consider the EMSO-definable MSC language L = {M(n, n) | n ≥ 1}, which
is recognized by the locally accepting 2-CFM from Fig. 8.1 on page 119 with
the set of synchronization messages {♦, �}. We easily verify that L is a weak
product MSC language. However, L is not contained in L(1-CFM). Because
suppose there is a 1-CFM A = ((Ai)i∈{1,2},D, sin , F) with L(A) = L. As A is
finite, there is a natural number n ≥ 1 and an accepting run of A on M(n, n)
such that component A1, when reading the first n letters 1!2 of M(n, n) � 1,
goes through a cycle, say of length k (≥ 1), and component A2, when reading
the last n letters 2?1 of M(n, n)�2, goes through another cycle, say of length
l (≥ 1). (We just have to choose n large enough.) But then there is also an
accepting run of A on M(n + (k · l), n) �∈ L, which contradicts the premise. �

Thus, a weak EMSO-definable product language is not necessarily imple-
mentable as a CFM with one synchronization message. However, this is the
case when we restrict to finitely generated or universally bounded languages:

Lemma 8.43. Let L be a finitely generated or universally bounded MSC lan-
guage.

(a) L ∈ EP0 iff L ∈ L(1-CFM�),
(b) L ∈ EP iff L ∈ L(1-CFM).

Proof. In the first instance, we prove (a). It remains to show the direction
from left to right. Let L ∈ EP0 and assume L is finitely generated. By means
of Theorems 4.1 and 2.3 and Proposition 3.2 from [73], it follows that L ∈
L(1-CFM�). Now assume L to be bounded. As L is already EMSO-definable,
it is even regular [45]. The result then follows from Lemma 8.23. Proving (b)
proceeds as the proof of Corollary 8.21. �

8.11 The Complete Hierarchy 145

1 2

Fig. 8.12. The MSC M(3, 2)

8.11 The Complete Hierarchy

So far, we investigated the expressiveness of CMs with respect to some lan-
guage classes proposed in Chap. 7. So let us summarize those results towards
a hierarchy of MSC languages.

L(CM�)

L(CFM�)

L(∀CFM�)

RP
0 =

L(1-∀CFM�)

L(1-CFM�)

P
0 =

L(1-CM�)

RP =
L(1-∀CFM)

L(1-CFM)

P =
L(1-CM)

EP
0

EP
R =

L(∀CFM)

EMSO =
L(CFM)

L(CM)

L(2-CFM�)

L(3-CFM�)

L(2-CFM)

L(3-CFM)

L(2-∀CFM�)

L(3-∀CFM�)

L(2-∀CFM)

L(3-∀CFM)

L(2-CM�)

L(3-CM�)

L(2-CM)

L(3-CM)

finite union =
from local to global

synchronisation
avoids product
behavior

no boundedness

infinite state space

Fig. 8.13. A hierarchy of MSC languages

Theorem 8.44. The classes of MSC languages proposed so far draw the pic-
ture given by Fig. 8.13.

Theorem 8.44 follows from the results of the preceding sections as well as
Lemma 8.45 and Lemma 8.47.

146 8 Communicating Finite-State Machines

i

aj bk

Fig. 8.14. Trace T(i, j, k) over eΣ bN

Lemma 8.45. For each N ≥ 1, L((N + 1)-∀CFM�) \ L(N -CM) �= ∅.

Proof. We shift the proof into the setting of traces, i.e., we specify a language
from L((N +1)-∀CFM�) that turns out to be contained in L(N -CM) only if a
corresponding trace language is recognized by some product automaton. First
of all, however, we show that such a product automaton cannot exist.

Claim 8.46. Let N̂ ≥ 1 be a natural number, let A bN+1 = {a1, . . . , a bN+1}
and B bN+1 = {b1, . . . , b bN+1} be alphabets, and let the distributed alphabet

Σ̃ bN be given by its components Σ1 = A bN+1 ∪ {1, . . . , N̂} and Σ2 = B bN+1 ∪

{1, . . . , N̂}. For i ∈ {1, . . . , N̂} and j, k ∈ {1, . . . , N̂ + 1}, set furthermore the

(M−)-trace T(i, j, k) over Σ̃ bN to be the one illustrated in Fig. 8.14 and the

trace language T to be {T(i, j, j) | i ∈ {1, . . . , N̂} and j ∈ {1, . . . , N̂ + 1}}∗.

There is no product automaton A over Σ̃ bN such that L−(A) = T (even if we
allow infinite local state spaces).

Proof of Claim 8.46. We prove the claim by contradiction. So suppose there is
a product automaton A = ((Ak)k=1,2, s

in , F) over Σ̃ bN , Ak = (Sk, ∆k), with
L−(A) = T . For k = 1, 2, we define 2Sk -labeled trees tk = (Domk, valk) where

Domk ⊆ W({1, . . . , N̂ + 1}), the set of nodes, is the least set satisfying the
following:

• ε ∈ Domk,
• if w ∈ Domk and |w| is even, then {w1, . . . , wN̂} ⊆ Domk,

• if w ∈ Domk and |w| is odd, then {w1, . . . , w(N̂ + 1)} ⊆ Domk.

The valuation function valk is given by

• valk(ε) = {sin [k]},

• valk(wi) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
{s ∈ Sk | ∃s

′ ∈ valk(w) : (s′, i, s) ∈ ∆k} if |wi| is odd
{s ∈ Sk | ∃s

′ ∈ valk(w) : (s′, ai, s) ∈ ∆k} if |wi| is even
and k = 1

{s ∈ Sk | ∃s
′ ∈ valk(w) : (s′, bi, s) ∈ ∆k} if |wi| is even

and k = 2.

Let i ≥ 1 be a natural number and let furthermore u = u(1)u(2) . . . u(2i) ∈
Dom1 and v = v(1)v(2) . . . v(2i) ∈ Dom2 be nodes of t1 and t2, respectively,
such that val1(u) �= ∅ and val2(v) �= ∅. While u stands for a set of computa-
tions of A1, each ending in a state from val1(u), v represents some computa-

tions of A2. As A1 and A2 communicate on the set {1, . . . , N̂}, the pair (u, v)

8.11 The Complete Hierarchy 147

represents a set of runs of A on T(u(1), u(2), v(2))·. . .·T(u(2i−1), u(2i), v(2i))
if, for each j ∈ {1, . . . , i}, u(2j − 1) = v(2j − 1). (Of course, only those
pairs (u, v) with u(2j) = v(2j) for each j ∈ {1, . . . , i} can contain accept-

ing ones.) Let d ∈ IN such that (N̂ + 1)d > |F | (thus, d ≥ 1). We can

identify at least (N̂2 + N̂)d pairwise distinct nodes w of length |w| = 2d
with (val1(w) × val2(w)) ∩ F �= ∅. This is because the runs (u, v) of A of

length |u| = |v| = 2d accept (N̂2 + N̂)d distinct traces (isomorphism classes
of traces). More precisely, there is a set V of nodes of t1 (which are also

nodes of t2) such that |V | = (N̂2 + N̂)d and, for each w ∈ V , |w| = 2d and

(val1(w)×val2(w)) ∩ F �= ∅. Up to level 2d, there are N̂d possible alternatives
to choose successor nodes on an even level. Thus, there is a subset V ′ of V
such that

• |V ′| = (bN2+ bN)d

bNd
= (N̂ + 1)d (> |F |), and

• for any u = u(1)u(2) . . . u(2d) ∈ V ′, v = v(1)v(2) . . . v(2d) ∈ V ′, and
j ∈ {1, . . . , d}, u(2j − 1) = v(2j − 1).

For any two nodes u = u(1)u(2) . . . u(2d) ∈ V ′ and v = v(1)v(2) . . . v(2d) ∈ V ′

with u �= v, (u, v) represents, according to the latter item, a set of runs on
T(u(1), u(2), v(2)) · . . . · T(u(2d − 1), u(2d), v(2d)) with u(2j) �= v(2j) for at
least one j ∈ {1, . . . , d}, which must be all rejecting. Thus, we have (val1(u)×
val2(v)) ∩ F = ∅ for any u, v ∈ V ′ with u �= v. But due to |V ′| > |F |, there are
at least two nodes u, v ∈ V ′ with u �= v such that (val1(u)×val2(v)) ∩ F �= ∅,

which contradicts the premise. Thus, a product automaton A over Σ̃ bN with
L−(A) = T cannot exist. This concludes the proof of Claim 8.46. �

1 2 3 4

...
...i

j ff
i

Fig. 8.15. MSC M(i)

Let N ≥ 1 and set N̂ = N2. For i ∈ {1, . . . , N̂ + 1}, consider the MSC
M(i) over {1, 2, 3, 4} as illustrated in Fig. 8.15. We claim that the set L bN+1 =

{M(i) | i ∈ {1, . . . , N̂ + 1}}∗ is contained in L((N + 1)-∀CFM�) \ L(N -CM).

Note first that L bN+1 is ∀(N̂ + 1)-bounded. The ∀-bounded locally accepting
(N+1)-CFM recognizing L bN+1 simply sends from agent 2 to agent 3 a message
with content n1 ∈ {1, . . . , N + 1} and then receives a message from agent 3
with content n2 ∈ {1, . . . , N + 1}. The possible outcomes of (n1, n2) now
encode the number of messages to be sent both from 2 to 1 and from 3 to

148 8 Communicating Finite-State Machines

4, respectively. As (N + 1)2 ≥ N2 + 1, this is indeed possible using N + 1
messages. However, restricting to N messages, such an encoding turns out to
be no longer achievable. We now show that L bN+1 in fact cannot be recognized

by an N -CM. Suppose there is an N -CM A = ((Ai)i∈{1,2,3,4},D, sin , F), Ai =
(Si, ∆i), with L(A) = L bN+1. Without loss of generality, we assume that D =

{1, . . . , N}. In the following, let h : {1, . . . , N}2 → {1, . . . , N̂} be a bijective
mapping and let, as in the proof of Claim 8.46, A bN+1 = {a1, . . . , a bN+1} and

B bN+1 = {b1, . . . , b bN+1} be alphabets and the distributed alphabet Σ̃ bN be

given by Σ1 = A bN+1 ∪ {1, . . . , N̂} and Σ2 = B bN+1 ∪ {1, . . . , N̂}. We define
=⇒1 ⊆ (S1 × S2)×Σ1 × (S1 × S2) and =⇒2 ⊆ (S3 × S4)×Σ2 × (S3 × S4) to
be the least sets, respectively, satisfying the following:

• if (s2, (2!3, n1)(2?3, n2), s
′
2) ∈ ∆2 for some n1, n2 ∈ {1, . . . , N} and s2, s

′
2 ∈

S2 (we extend ∆2 in the obvious manner), then (s1, s2)
h(n1,n2)
=⇒1 (s1, s

′
2) for

each s1 ∈ S1,
• if (s3, (3?2, n1)(3!2, n2), s

′
3) ∈ ∆3 for some n1, n2 ∈ {1, . . . , N} and s3, s

′
3 ∈

S3, then (s3, s4)
h(n1,n2)
=⇒2 (s′3, s4) for each s4 ∈ S4,

• if
(s2, (2!1, i1) . . . (2!1, ik)(2?1, ik+1), s

′
2) ∈ ∆2 and

(s1, (1?2, i1) . . . (1?2, ik)(1!2, ik+1), s
′
1) ∈ ∆1

for some k ∈ {1, . . . , N̂ + 1}, i1, . . . , ik, ik+1 ∈ {1, . . . , N}, s2, s
′
2 ∈ S2, and

s1, s
′
1 ∈ S1, then (s1, s2)

ak=⇒1 (s′1, s
′
2),

• if
(s3, (3!4, i1) . . . (3!4, ik)(3?4, ik+1), s

′
3) ∈ ∆3 and

(s4, (4?3, i1) . . . (4?3, ik)(4!3, ik+1), s
′
4) ∈ ∆4

for some k ∈ {1, . . . , N̂ + 1}, i1, . . . , ik, ik+1 ∈ {1, . . . , N}, s3, s
′
3 ∈ S3, and

s4, s
′
4 ∈ S4, then (s3, s4)

bk=⇒2 (s′3, s
′
4).

Employing the transition relations =⇒1 and =⇒2, we construct a product
automaton A′ = ((A′

i)i=1,2, s
in ′

, F ′) over Σ̃ bN , A′
i = (S′

i, =⇒i) (with possibly
infinite S′

i), where

• S′
1 = S1 × S2 and S′

2 = S3 × S4,

• sin ′
= ((sin [1], sin [2]), (sin [3], sin [4])), and

• F ′ = {((s1, s2), (s3, s4)) | (s1, s2, s3, s4) ∈ F}.

We easily verify that L(A) = L bN+1 implies L−(A′) = T with T taken from
Claim 8.46. But as Claim 8.46 states, such a product automaton A′ does not
exist, resulting in a contradiction. �

Lemma 8.47.
L(1-∀CFM) \ L(CM�) �= ∅

8.12 Bibliographic Notes 149

1!2 2?1 3?4 4!3

A1: A2: A3: A4:

Fig. 8.16. A 1-CFM recognizing L

Proof. Let L consist of the MSCs G and I given by Fig. 7.6 on page 99. Then,
L is contained in L(1-∀CFM) \ L(CM�). As agents 1 and 2 do not receive
any message from 3 and 4 and vice versa, any locally accepting CM accepting
both G and I will also accept G · I and 1MSC. In contrast, the ∀-bounded
1-CFM from Fig. 8.16 recognizing L has some global knowledge employing
global final states. �

We did not pay special attention to the relation between (weak) EMSO-
definable product languages and the classes of languages defined by (locally
accepting) N -CFMs for N ≥ 2, which is indicated by the light-gray line
in Fig. 8.13 on page 145. However, we assume that it is possible to show
incomparability respectively witnessed by a language depending on N and
similar, even though more complicated, to the one suggested in the proof of
Lemma 8.42.

8.12 Bibliographic Notes

Communicating finite-state machines were first studied in [19]. However, there
is no agreement on which automata model is the right one to make an MSC
language realizable: while, for example, [37] is based on a local acceptance
condition and allows us to send synchronization messages, [4, 73] forbid those
extra messages. In [45], though a priori unbounded channels are allowed, a
channel-bounded model, equipped with a global acceptance mode, suffices
to implement regular MSC languages. In the end, the choice of a suitable
automata model depends on a thorough analysis of the system environment.

Recall that product languages and related automata models were intro-
duced for traces in [88]. Alur et al. define similar notions for MSCs [4], which
then lead to product MSC languages as introduced in [16]. An alternative
approach has recently been provided by Adsul et al., who consider the causal
closure of MSC languages instead of projections onto agents [2]. The local
projection onto an agent i is hereby replaced with the downwards closure of
the maximal event of i. It turns out that then the question if a regular MSC
language is a weak product language is decidable, whereas it is undecidable

150 8 Communicating Finite-State Machines

when using local projections [4]. The decidability result is based on the ob-
servation that the causal closure of a regular MSC language is still regular,
which is witnessed by a corresponding ∀-bounded locally accepting CFM [2].

The notion of regular MSC languages and the need for synchronization
messages were established in [45] and resumed in [56] to extend it in a way to
cope with infinite MSCs. Graph acceptors over MSCs were considered in [17],
which also studies the expressiveness of CFMs in terms of EMSO logic.

9

Beyond Implementability

In this chapter, we turn our attention to the relation between MSO logic over
MSCs and its existential fragment (and therefore, implicitly, CFMs, which
refer to the notion of implementability). We also compare those logics to the
classes of rational and recognizable MSC languages. In particular, MSO logic
will turn out to be strictly more expressive than EMSO. Together with the
results of the previous chapter, this will be used to prove that CFMs cannot
be complemented in general and that they cannot be determinized. Those
results rely on an encoding of grids into MSCs, which allows us to apply results
from the framework of grids and graphs in general to MSCs. Altogether, we
highlight the application limitations of CFMs so that future work might aim
at finding large classes of CMs that still have promising algorithmic and logical
properties.

9.1 EMSO vs. MSO in the Bounded Setting

Let us first study the corresponding problem in the bounded setting where we
restrict the interpretation of formulas to ∀B-bounded MSCs.

Theorem 9.1. For any B ≥ 1,

EMSOMSC∀B
= MSOMSC∀B

= EMSO[≤]MSC∀B
= MSO[≤]MSC∀B

Proof. First note that the language of a CFM restricted to ∀B-bounded MSCs
is regular. More precisely, for any CFM A and any B ≥ 1, L(A) ∩MSC∀B is
a regular MSC language. With Theorem 8.33 and results from [45] and [56],
this implies EMSOMSC∀B

= EMSO[≤]MSC∀B
=MSO[≤]MSC∀B

.
It remains to show that EMSOMSC∀B

⊇ MSOMSC∀B
. More generally,

we show that, for each ϕ(Y1, . . . , Yn) ∈ MSO, n ≥ 1, there is a CFM A
(adapted to structures from 〈MSC, {0, 1}n〉) such that L(A) = LMSC∀B

(ϕ). So
let ϕ(Y1, . . . , Yn) ∈ MSO, which, according to Lemma 3.5, can be assumed to
be of the form

152 9 Beyond Implementability

∃Xk∀Xk−1 . . .∃/∀X1ψ(Y1, . . . , Yn, Xk, . . . , X1)

or, equivalently,

∃Xk¬∃Xk−1 . . .¬∃X1ψ
′(Y1, . . . , Yn, Xk, . . . , X1)

for some k ≥ 1. We proceed by induction on k. For k = 1, ϕ is an EMSO-
formula, which has an equivalent CFM counterpart A (tailored to extended
MSCs), i.e., L(A) = LMSC(ϕ). Using =⇒A, we gain some finite automaton over
Γ ×{0, 1}n recognizing Lin(L(A) ∩ 〈MSC∀B, {0, 1}n〉), which is a witness for
the fact that L(A) ∩ 〈MSC∀B , {0, 1}n〉 is a regular MSC language. According
to [74], there is A′ ∈ det-∀CFM with L(A′) = L(A) ∩ 〈MSC∀B, {0, 1}n〉.
(Though we did not explicitly define what determinism means for extended
CMs, it is obvious how to adjust the definition accordingly so that, then, the
above-mentioned result by Mukund et al. also holds in the extended setting.)
Induction now alternately involves complementation and projection steps. A
complementation step first requires the construction of the CFM A′ from A′

with L(A′) = 〈MSC, {0, 1}n〉 \ L(A′), which, though taking into account that
we deal with extended MSCs, can be found along the usual lines: we first
provide a complete deterministic CFM, whose set of global final states is then
complemented. Projection is even easier, as communication actions just need
to be projected onto the remaining components. �

As sets of ∀B-bounded MSCs can be seen as sets of Mazurkiewicz traces
[56] and, in the setting of Mazurkiewicz traces, MSO logic is expressively
equivalent to asynchronous automata (cf. Theorem 6.22), Theorem 8.33 can
be understood as an extension of Zielonka’s theorem.

Proposition 9.2 ([56]). For any B ≥ 1, the following hold:

(a) MSC∀B ∈ EMSOMSC,
(b) MSC∀B ∈ EMSO[≤]MSC.

By Proposition 9.2, Theorem 9.1 can be sharpened as follows:

Theorem 9.3. For any ∀-bounded MSC language L, the following statements
are equivalent:

1. L ∈ EMSOMSC,
2. L ∈MSOMSC,
3. L ∈ EMSO[≤]MSC,
4. L ∈MSO[≤]MSC,
5. L ∈ CFM.

It was even shown that, if we restrict to ∃-bounded MSC languages, any
MSOMSC-definable set is implementable.

Theorem 9.4 ([35]). Theorem 9.3 holds for ∃-bounded MSC languages ver-
batim.

9.2 EMSO vs. MSO in the Unbounded Setting 153

The proof by Genest et al. makes use of ideas from [56]: existentially bounded
MSC languages are also seen as trace languages, which allows us to apply
asynchronous mappings [27].

9.2 EMSO vs. MSO in the Unbounded Setting

In this section, we show that, in contrast to the bounded case (no matter
if globally or existentially, as we have seen), quantifier alternation forms a
hierarchy, i.e., MSO over MSCs is strictly more expressive than the most
expressive model of a CFM.

Matz and Thomas proved that the monadic quantifier-alternation hierar-
chy over grids is infinite [66, 93] (cf. Theorem 3.29). We show how grids can
be encoded into MSCs and then rewrite the result by Matz and Thomas in
terms of MSCs, adapting their proof to our setting.

Theorem 9.5. The monadic quantifier-alternation hierarchy over MSC is in-
finite.

Proof. A grid G(n, m) can be folded to an MSC M(n, m) over {1, 2} as exem-
plified for G(3, 5) in Fig. 9.1. A similar encoding was used in [92] to transfer
results on grids to the setting of acyclic graphs with bounded antichains. By
the type of an event, we recognize which events really correspond to a node
of the grid, namely those that are labeled with a send action performed by
agent 1 or 2. Formally, M(n, m) is given by its projections as follows:

M(n, m)�1 =

{
(1!2)n [(1?2)(1!2)]n((m−1)/2) if m is odd

(1!2)n [(1?2)(1!2)]n((m/2)−1) (1?2)n if m is even

M(n, m)�2 =

{
[(2?1)(2!1)]

n((m−1)/2)
(2?1)n if m is odd

[(2?1)(2!1)]
n(m/2)

if m is even

A grid language G defines the MSC language L(G) := {M(n, m) | G(n, m) ∈
G}. For a function f : IN≥1 → IN≥1, we furthermore write L(f) as a shorthand
for the MSC language L(G(f)). We now closely follow [93], which summarizes
the result of [66]. So, for k ∈ IN, let the functions sk, fk : IN≥1 → IN≥1 be
inductively defined via s0(n) = n, sk+1(n) = 2sk(n), f0(n) = n, and fk+1(n) =
fk(n) · 2fk(n).

Claim 9.6. For each k ∈ IN, the MSC language L(fk) is (Σ2k+3)MSC-
definable.

Proof of Claim 9.6. We will show that, for any k ≥ 1, if a grid language G is
Σk(−, {1, 2})GR-definable, then L(G) is Σk(Γ ({1, 2}))MSC({1,2})-definable. The
claim then follows from the fact that any grid language G(fk) is (Σ2k+3)GR-
definable [93].

154 9 Beyond Implementability

1!2

1!2

1!2

1?2

1!2

1?2

1!2

1?2

1!2

1?2

1!2

1?2

1!2

1?2

1!2

2?1

2!1

2?1

2!1

2?1

2!1

2?1

2!1

2?1

2!1

2?1

2!1

2?1

2?1

2?1

(1, 1)

(2, 1)

(3, 1)

(1, 3)

(2, 3)

(3, 3)

(1, 5)

(2, 5)

(3, 5)

(1, 2)

(2, 2)

(3, 2)

(1, 4)

(2, 4)

(3, 4)

Fig. 9.1. Folding the (3, 5)-grid

So let k ∈ IN≥1. Figure 9.2 on the facing page shows the CFM AGF ,
which recognizes the set of all possible grid foldings. For clarity, ε-transitions
are employed, which can be easily eliminated without affecting the recognized
language. As usual, a global final state is depicted by a dashed line. Moreover,
its labeling indicates which grid foldings it accepts, while n and m range over
IN≥1 and IN, respectively.

Alternatively, a corresponding EMSO-sentence requires the existence of
a chain iterating between agents 1 and 2. So, according to Theorem 8.33,
let ϕGF = ∃XψGF (X) be an EMSO-sentence (over MSCs over {1, 2}) with
first-order kernel ψGF (X) that defines the language of AGF . Moreover, let
ϕ = ∃Y1∀Y2 . . .∃/∀Ykϕ′(Y1, . . . , Yk) be a Σk-sentence (over grids) where
ϕ′(Y1, . . . , Yk) contains no set quantifiers. Without loss of generality, ϕGF

and ϕ employ distinct sets of variables, which, moreover, are supposed to
be distinct from some variable Z. We now determine the Σk-sentence Ψϕ over
MSCs with LMSC(Ψϕ) = L(LGR(ϕ)), i.e., the foldings of LGR(ϕ) form exactly
the MSC language defined by Ψϕ. Namely, Ψϕ is given by

∃Z∃X∃Y1∀Y2 . . .∃/∀Yk(bottom(Z) ∧ ψGF (X) ∧ ‖ϕ′(Y1, . . . , Yk)‖Z)

9.2 EMSO vs. MSO in the Unbounded Setting 155

1!2, #

1!2,⊥

ε

1?2,♦

1?3

ε
1?2,♦

1!2,♦
1?2,⊥

1!2,⊥

ε

1?2,�

1?2,⊥

ε
1?2,�

1!2, �
1?2,⊥

1!2,⊥

ε

ε

2?1,#

2?1,⊥

2?1,⊥

2!1,⊥

ε

2?1,♦

2?1,⊥

ε

2?1, �

2?1,⊥

ε

2?1,#

2!1,♦

2?1,⊥

2!1,⊥

ε

2?1,♦

2!1,�

2?1,⊥

ε

2?1, �

2!1,♦

ε

(n, 1)

(n, 4m + 2)

(n, 4m + 3)

(n, 4m + 4)

(n, 4m + 5)

Fig. 9.2. A CFM recognizing GF

Here, the first-order formula bottom(Z) with free variable Z makes sure that
Z is reserved to those send vertices that correspond to the end of a column
(for simplicity, Z may contain some receive events, too), which are highlighted
in Fig. 9.3 for M(3, 5). This can be easily formalized starting with the require-
ment that Z contains the maximal send event on the first process line that is
not preceded by some receive event. Furthermore, ‖ϕ′(Y1, . . . , Yk)‖Z is induc-
tively derived from ϕ′(Y1, . . . , Yk) as follows:

• ‖x = y‖Z = (x = y)
• ‖S1(x, y)‖Z =

¬(x ∈ Z)
∧

∨
σ∈{1!2,2!1}(λ(x) = σ ∧ λ(y) = σ)

∧ x �1 y
∨ ∃z(λ(z) = 1?2 ∧ x �1 z ∧ z �1 y)
∨ ∃z(λ(z) = 2?1 ∧ x �2 z ∧ z �2 y)

156 9 Beyond Implementability

1!2

1!2

1!2

1?2

1!2

1?2

1!2

1?2

1!2

1?2

1!2

1?2

1!2

1?2

1!2

2?1

2!1

2?1

2!1

2?1

2!1

2?1

2!1

2?1

2!1

2?1

2!1

2?1

2?1

2?1

(1, 1)

(2, 1)

(3, 1)

(1, 3)

(2, 3)

(3, 3)

(1, 5)

(2, 5)

(3, 5)

(1, 2)

(2, 2)

(3, 2)

(1, 4)

(2, 4)

(3, 4)

Fig. 9.3. Events of a grid folding that correspond to the end of a column

• ‖S2(x, y)‖Z =
λ(x) = 1!2 ∧ λ(y) = 2!1 ∧ ∃z(x �c z ∧ z �2 y)
∨ λ(x) = 2!1 ∧ λ(y) = 1!2 ∧ ∃z(x �c z ∧ z �1 y)

• ‖x ∈ X‖Z = x ∈ X
• ‖¬ϕ1‖Z = ¬‖ϕ1‖Z
• ‖ϕ1 ∨ ϕ2‖Z = ‖ϕ1‖Z ∨ ‖ϕ2‖Z
• ‖ϕ1 ∧ ϕ2‖Z = ‖ϕ1‖Z ∧ ‖ϕ2‖Z
• ‖ϕ1 → ϕ2‖Z = ‖ϕ1‖Z → ‖ϕ2‖Z
• ‖ϕ1 ↔ ϕ2‖Z = ‖ϕ1‖Z ↔ ‖ϕ2‖Z
• ‖∃xϕ1‖Z = ∃x(λ(x) ∈ {1!2, 2!1} ∧ ‖ϕ1‖Z)
• ‖∀xϕ1‖Z = ∀x(λ(x) ∈ {1!2, 2!1} → ‖ϕ1‖Z)

Note that the above derivation makes sure that only elements that correspond
to grid nodes are assigned to Y1, . . . , Yk. �

Claim 9.7. Let f : IN≥1 → IN≥1 be a function. If L(f) is (Σk)MSC-definable
for some k ≥ 1, then f(n) is in sk(O(n)).

Proof of Claim 9.7. Let k ≥ 1 and, in the following, let the events of an MSC
(V, �, λ) be labeled with elements from Γ × {0, 1}l for some l ∈ IN≥1, i.e.,

9.2 EMSO vs. MSO in the Unbounded Setting 157

λ : E → Γ × {0, 1}l. But note that the type of an event still depends on the
type of its communication action only. Furthermore, let ϕ(Y1, . . . , Yl) be a Σk-
formula defining a set of MSCs over the new label alphabet that are foldings
of grids. For a fixed column length n ≥ 1, we will build a finite automaton
An over (Γ × {0, 1}l)n with sk−1(c

n) states (for some constant c) that reads
grid-folding MSCs column by column and is equivalent to ϕ(Y1, . . . , Yl) with
respect to grid foldings with column length n. Column here means a sequence
of communication actions, each provided with an additional label, that repre-
sents a column in the corresponding grid. For example, running on the MSC
M(3, 5) as shown in Fig. 9.1 and 9.3, A3 first reads the letter (1!2)3 (recall that
each action is still provided with an extra labeling, which we omit here for
the sake of clarity), then continues reading ((2?1)(2!1))3 and so on. Then, the
shortest word accepted by An has length ≤ sk−1(c

n) so that, if ϕ(Y1, . . . , Yl)
defines an MSC language L(f) for some f , we have f(n) ∈ sk(O(n)). Let us
now turn to the construction of An. The formula ϕ(Y1, . . . , Yl) is of the form

∃Xk∀Xk−1 . . .∃/∀X1ψ(Y1, . . . , Yl, Xk, . . . , X1)

or, equivalently,

∃Xk¬∃Xk−1 . . .¬∃X1ψ
′(Y1, . . . , Yl, Xk, . . . , X1)

We proceed by induction on k. For k = 1, ϕ(Y1, . . . , Yl) is an EMSO-formula.
According to Theorem 3.24, its MSC language (consisting of MSCs with ex-
tended labelings) coincides with the MSC language of some graph acceptor.
The transformation from graph acceptors to CFMs can be easily adapted
to handle the extended labeling. Thus, ϕ(Y1, . . . , Yl) defines a language that
is recognized by some CFM A = ((Ai)i∈Ag ,D, sin , F). The automaton An

can now be obtained from A using a part of its global transition relation
=⇒A ⊆ ConfA × (Γ × {0, 1}l) × D × ConfA. Note that we have to consider
only a bounded number of channel contents, as the set of grid foldings with
column length n forms a ∀n-bounded MSC language. For some constant c,
we have (|SA| · (|D| + 1))|Ch|·n ≤ cn. Thus, cn = s0(c

n) is an upper bound
for the number of states of An, which only depends on the CFM A and,
thus, on ϕ(Y1, . . . , Yl). The induction steps respectively involve both a com-
plementation step (for negation) and a projection step (concerning existential
quantification). While the former increases the number of states exponentially,
the latter leaves it constant so that, altogether, the required number of states
is obtained. This concludes the proof of Claim 9.7. �

As fk+1(n) is not in sk(O(n)), it follows from Claims 9.6 and 9.7 that the
hierarchy of classes of (Σk)MSC-definable MSC languages is infinite. �

Corollary 9.8.

CFM = EMSOMSC � MSOMSC

As, for any f : IN≥1 → IN≥1 and (V, �, λ) ∈ L(f), � = �, which is first-
order definable in terms of ≤, we obtain the following (cf. Theorem 8.41):

158 9 Beyond Implementability

Corollary 9.9.MSO[≤]MSC and EMSOMSC are incomparable with respect
to inclusion.

Since CFM = EMSOMSC, it follows that the complement MSC \ L of an
MSC language L ∈ CFM is not necessarily contained in CFM. Thus, we get
the answer to a question, which had been raised by Kuske [56].

Theorem 9.10. CFM is not closed under complementation.

9.3 Determinism vs. Nondeterminism

Real-life distributed systems are usually deterministic. Besides the absence
of deadlocks, determinism is therefore one of the crucial properties an imple-
mentation of a distributed protocol should have. Previous results immediately
affect the question of whether deterministic CFMs suffice to achieve the full
expressive power of general CFMs. We have learned that, in the framework of
words and traces, any finite automaton and, respectively, any asynchronous
automaton admits an equivalent deterministic counterpart. However, things
are more complicated regarding MSCs and (Σ̃, C)-dags in general. Let us first
have a look at the bounded setting.

Theorem 9.11 ([56, 74]).

L(det-∀CFM) = L(∀CFM)

The algorithm by Mukund et al. to construct from a nondeterministic CFM
a deterministic counterpart is based on a technique called time stamping,
whereas Kuske’s construction relies on asynchronous mappings for traces.
Unfortunately, the preceding result cannot be transferred to the unbounded
setting.

Theorem 9.12.
L(det-CFM) � L(CFM)

Proof. According to the algorithm from page 121, we can assume a deter-
ministic CFM A = ((Ai)i∈Ag ,D, sin , F) to be complete in the sense that,
for any MSC M, it allows exactly one run on M. If we set A to be the
deterministic CFM ((Ai)i∈Ag ,D, sin , SA \ F), then L(A) = MSC \ L(A).
Thus, L(det-CFM) is closed under complementation. However, as Theorem
9.10 states, L(CFM) is not closed under complementation, which implies the
theorem. �

Theorems 9.10 and 9.12 show that both EMSO logic and CFMs in their unre-
stricted form are unlikely to have some nice algorithmic properties that would
attract practical interest.

Exercise 9.13. Show Theorems 5.50, 5.51, and 5.52.

9.4 CFMs vs. Recognizability 159

9.4 CFMs vs. Recognizability

In the field of MSCs, recognizability was first studied by Morin in [73] and
turned out to be closely related to implementability.

Proposition 9.14 ([73]). For any finitely generated MSC language L, we
have L ∈ RECMSC iff L ∈MSO[≤]MSC.

Recall that, due to [35], every finitely generated MSC language that is also
MSO[≤]MSC-definable admits an implementation in terms of a CFM.

q0

q1 q2

MSC

{1MSC}

{1MSC}

L MSC \ (L ∪ {1MSC})

MSC \ {1MSC}

Fig. 9.4. An MSC-automaton

Let us now focus on implementability and investigate the expressive power
of CFMs relative to the class of recognizable MSC languages. In fact, any finite
implementation describes a recognizable MSC language, whereas, however,
there are more recognizable languages than implementable ones.

Theorem 9.15.
CFM � RECMSC

Proof. It is easy to provide a recognizable language that is not implementable.
In fact, any set L of prime MSCs is recognizable by the MSC-automaton
depicted in Fig. 9.4. Conversely, suppose A = ((Ai)i∈Ag ,D, sin , F) to be a

CFM. For a global state s ∈ SA of A and an MSC M, we denote by δ̂(s, M) the
set of global states s′ ∈ SA such that A admits some run on M that starts in
s and ends in s′ (in particular, (s, χε) �∗

A (s′, χε)). Then, (2SA , δ, {sin}, {S ⊆
SA | S ∩ F �= ∅}), where, for any S ⊆ SA and any MSC M, δ(S, M) =⋃

s∈S δ̂(s, M), is an MSC-automaton whose language is L(A). �

Concluding, one might argue that, actually, recognizability makes sense for
finitely generated MSC languages, where it reduces to implementability, only.
This view is supported by Proposition 2.7, according to which MSC is not
rational. However, the latter property is shared with the class RMSC of regular
MSC languages, which does not contain MSC either.

160 9 Beyond Implementability

9.5 CFMs vs. Rational MSC Languages

A major goal regarding high-level constructs has been to identify specifica-
tions that allow implementations in terms of CFMs, preferably automatically
and efficiently. This is difficult in general, as an implementation is controlled
locally rather than globally, whereas high-level descriptions such as HcMSCs
allow us to declare global states that control multiple agents at the same
time. Moreover, it has been studied how to regain from an implementation
a specification and whether a formalism is complete in the sense that any
implementable language can be specified at all. Those efforts are important
with regard to the analysis of a system, as they help to gain new insights
into how an implementation is structured. The former question of deriving an
implementation from a given specification is raised in [37, 42], for example,
while the inverse problem was tackled in [21, 40, 77]. However, we first show
that completeness is not achievable if we consider classes of HcMSCs.

1 2 3 4 5 6 7

A1

(
...

A2

(
...

B1

(
...

B2

(
...

...
)

C1

...
)

C2

Fig. 9.5. An MSC language that is implementable but not the MSC language of
some HcMSC

9.5 CFMs vs. Rational MSC Languages 161

Proposition 9.16. There is an implementable MSC language that cannot be
described by some HcMSC.

Proof. An implementable MSC language that is not the MSC language of
some HcMSC is depicted in Fig. 9.5 where the Ai, Bi, Ci are supposed to be
natural numbers indicating how often a corresponding message is sent. Let
us denote this language by L and suppose there is an HcMSC H whose basic
MSC language is L. As A1 and A2 can be arbitrarily large, there must occur
respective iterations in H, which allow for sending arbitrarily many messages
from 2 to 4. Now suppose that this is only done by partial MSCs that consist
of one single send event. Consequently, there must be an iteration of respective
single receive events. Due to pumping arguments, those unmatched singletons
can be combined towards an MSC where messages sent in the A1-phase are
only received in the A2-phase, which is not desired. So, when building an
MSC, H must employ at least one partial MSC MA that contains a complete
message transfer from 2 to 4. By the same argument, there have to appear
prime MSCs MB and MC in H that represent a complete message from 2 to 6
(in the B1- or B2-phase) and a message from 6 to 4 (in the C1- or C2-phase),
respectively. But, obviously, the three partial MSCs MA, MB, and MC we
identified cannot contribute to an MSC as depicted in Fig. 9.5, which is a
contradiction. �

Generalizing a result by Genest et al., who showed that any safe gc-HcMSC
can be defined in terms of MSOMSC [35], we show that any gc-HcMSC describes
an MSOMSC-definable MSC language.

Theorem 9.17.
gc-HcMSC ⊆ MSOMSC

Proof. Let H be a gc-HcMSC. Without loss of generality, we can assume that
any nonempty partial MSC that occurs inH is prime and that there is at least
one prime partial MSC inH. Now set Π = {a1, . . . , am} to be the (finite) set of

those prime partial MSCs, which gives rise to the trace monoid TR−(Σ̃Π). Let

α be a copy ofH, which will then be seen as a rational expression of TR−(Σ̃Π).
According to Chap. 6, we can assume the existence of an MSO(Π)-sentence

ϕ that defines L(α) relative to TR−(Σ̃Π), i.e., L(α) = L
TR−(eΣΠ)(ϕ). We now

construct a formula Φ ∈ MSO(Γ) such that LMSC(Φ) = L(H) as follows:
We extend Π towards Π ′ = {a1, . . . , am, a′

1, . . . , a
′
m}, which contains for

each member ak of Π a distinct copy a′
k. Moreover, we define a new distributed

alphabet Σ̃′
Π to be (Σ′

i)i∈Ag where, for any i ∈ Ag , Σ′
i = {a ∈ Π ′ | i ∈ Ag(a)}.

It is not hard to see that the trace language that we obtain from L(α) if we
replace in any trace every second ak with its copy a′

k is MSO(Π ′)
TR−(eΣ′

Π
)-

definable, say by a sentence α′. In particular, for any trace (V, �, λ) ∈ L(α′)
and u, u′ ∈ V , u � u′ implies λ(u) �= λ(u′). Though a′

k is a distinct copy of
ak, it will stand for the same prime partial MSC as ak. This will prove useful

162 9 Beyond Implementability

when we now transform α′ into the formula Φ ∈ MSO(Γ) that defines L(H)
relative to MSC. It is basically of the form

Φ = ∃Xa1
. . .∃Xam

∃Xa′
1
. . .∃Xa′

m

(
partition ∧

∧
a∈Π′

Ψa ∧ Ψ≺ ∧ ||α
′||

)
Roughly speaking, the formula partition (whose free variables are omitted
here) guarantees that the basic MSC at hand is partitioned into sets repre-
sented by Xa1

, . . . , Xam
, Xa′

1
, . . . , Xa′

m
. Intuitively, Xak

and Xa′
k

decompose
into all the prime partial MSCs that are single events in the trace represen-
tation of the MSC at hand. Thus, a formula Ψa ensures that, in turn, the set
Xa can be partitioned into sets of events that each correspond to some event
of a trace, which is a prime partial MSC. This can be done by a first-order
formula. For example, taking a ∈ Π ′ to be the prime partial MSC G from
Fig. 7.6 on page 99 (recall that ak and a′

k still both have to represent the same
prime partial MSC), Ψa has to formalize that, for any x, x ∈ Xa implies

• x is either labeled with 1!2 or with 2?1, and
• if x is labeled with 1!2, then there is an event y ∈ Xa with x �c y such

that any z �∈ {x, y} that is related to either x or y with respect to � is not
contained in Xa, and

• if x is labeled with 2?1, then there is an event y ∈ Xa with y �c x such
that any z �∈ {x, y} that is related to either x or y with respect to � is not
contained in Xa.

Decomposing each set Xa into disjoint sets of events yields a refined partition-
ing of the MSC at hand, say into sets X1, . . . , XK . Of course, K can be arbi-
trarily large. However, one can capture an element from X = {X1, . . . , XK}
by means of an MSO(Γ)-formula ψ(X). Let us define an order ≺ on X ac-
cording to Xk ≺ Xl if there are x ∈ Xk and y ∈ Xl both located on some
agent i such that x �i y. Now, Ψ≺ has to ensure that the reflexive transitive
closure of ≺ is a well-defined partial order, which can be formalized by means
of the (MSO-definable) transitive closure of the predicate ||x � y|| as speci-
fied below. Intuitively, this excludes an overlapping of prime partial MSCs.
Moreover, ||α′|| is inductively derived from α′ where

• ||λ(x) = a|| = x ∈ Xa,
• ||x ∈ X|| = x ∈ X,
• ||x � y|| formalizes that x and y respectively belong to some distinct sets

Xk, Xl ∈ X with Xk ⊆ Xa and Xl ⊆ Xb for some a and b such that both
Xk ≺ Xl and there is no set Xr ∈ X with Xk ≺ Xr ≺

+ Xl. In particular,
there must be a path from x to y via elements from � ∪ �−1 whose prefix
consists of elements from Xa and which then only consists of elements
from Xb where the transition from Xa to Xb must come from some �i

(which can be done by a first-order formula, as the length of a shortest
path is restricted by a constant that only depends on Π), and

9.6 Summary 163

• ||x = y|| is defined similarly to ||x � y|| and formalizes that x and y belong
to the same set Xa so that there is a path from x to y via elements from
� ∪ �−1 that consists of elements from Xa only.

The other operators are derived canonically. �

It remains to identify a large subset of implementable gc-HcMSCs includ-
ing some of those generating (even existentially) unbounded behavior. In [35],
it is already shown that any safe gc-HcMSC gives rise to an implementable
MSC language, supplementing Theorem 9.3.

Theorem 9.18 ([35]). For any ∃-bounded MSC language L,

L ∈ gc-HcMSC implies L ∈ CFM

Actually, [35] even shows that an ∃-bounded MSC language is implementable
iff it is the MSC language of some safe HcMSC in which iteration occurs only
over partial MSCs with connected communication graph.

9.6 Summary

?

MSO EMSO = CFM

gc-HcMSC

safe-gc-HcMSC

Fig. 9.6. An overview

Some results of this and the previous chapter are illustrated in Fig. 9.6. More-
over, Table 9.1 summarizes the most important results for CFMs. Recall that
they are expressively equivalent to EMSO logic over MSCs. In particular, any
EMSO sentence admits some implementation in terms of a CFM. The proof
was based on results from Chap. 5. Moreover, the class of MSO-definable MSC
languages was proved to be strictly larger than the class of implementable
ones, concluding that CFMs cannot be complemented in general. We can also
infer that the deterministic model of a CFM is strictly weaker than the non-
deterministic one.

In the following, we list several open problems of interest that deserve
further investigation:

164 9 Beyond Implementability

Table 9.1. Closure and expressiveness properties of communicating finite-state ma-
chines

∪ ∩ · det EMSO MSO Empt.

� � � � = � �

• It remains open whether there is an EMSO[≤]-sentence (or even FO[≤]-
sentence) whose language is not in CFM. Note that we proved the corre-
sponding result for MSO[≤] only. Our conjecture is that there exists such
a sentence. It is also an open problem what the exact relation between
EMSO[≤, �c] and CFM is.

• A further step might be to extend our results to infinite MSCs (and infinite

(Σ̃, C)-dags in general). In [56], Kuske extends the finite setting to the
infinite one in terms of regular MSC languages. As Hanf’s theorem has
a counterpart for infinite graphs, it might be possible to obtain similar
results.

• Our hierarchy of CMs is primarily a hierarchy of weakly realizable MSC
languages [4], as their implementation is not necessarily free from dead-
locks. It would be desirable to study deadlock-free CMs in more detail,
which give rise to safely realizable MSC languages. In particular, it would
be worthwhile to study formalisms and logics that are implementable in
terms of a safe and deterministic CFM.

• In [35], it is shown that any safe gc-HcMSC is implementable. It remains
to identify even larger sets of implementable HcMSCs. Recall that the
existence of a defining EMSO-sentence is a sufficient criterion for imple-
mentability.

• In the context of traces, several temporal logics and their relation and
complexity have been studied [26, 58, 89, 95]. In the framework of MSCs,
similar studies are just starting [69, 70]. Of particular interest will be to
find a canonical linear-time temporal logic, for example in the sense of
Kamp’s theorem [26, 51].

9.7 Bibliographic Notes

The study of the gap between MSO over graphs and its existential fragment
was initiated in [66] and then extended in [65]. Moreover, [93] provides an
accessible overview of that topic. Recognizable MSC languages, CMs, and
MSO logic over MSCs have been compared first in [73]. The precise coincidence
of universally bounded CFMs and (E)MSO logic has been established in [45];
that between existentially bounded CFMs and (E)MSO logic has been shown
in [35].

References

1. P. A. Abdulla and B. Jonsson. Verifying programs with unreliable channels. In
Proceedings of the 18th IEEE Symposium on Logic in Computer Science (LICS
2003), Ottawa, Canada, pages 160–170. IEEE Computer Society Press, 1993.

2. B. Adsul, M. Mukund, K. Narayan Kumar, and Vasumathi Narayanan. Causal
closure for MSC languages. In Proceedings of the 25th International Confer-
ence on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2005), volume 3821 of Lecture Notes in Computer Science, pages
335–347, Hyderabad, India, 2005. Springer.

3. R. Alur, K. Etessami, and M. Yannakakis. Realizability and verification of MSC
graphs. In Proceedings of the 28th International Colloquium on Automata, Lan-
guages and Programming (ICALP 2001), Crete, Greece, volume 2076 of Lecture
Notes in Computer Science, pages 797–808. Springer, 2001.

4. R. Alur, K. Etessami, and M. Yannakakis. Inference of message sequence charts.
IEEE Trans. Software Eng., 29(7):623–633, 2003.

5. R. Alur, K. Etessami, and M. Yannakakis. Realizability and verification of MSC
graphs. Theoretical Computer Science, 331(1):97–114, 2005.

6. R. Alur and M. Yannakakis. Model checking of message sequence charts. In
Proceedings of the 10th International Conference on Concurrency Theory (CON-
CUR 1999), Eindhoven, The Netherlands, volume 1664 of Lecture Notes in Com-
puter Science, pages 114–129. Springer, 1999.

7. J. Araújo. Formalizing sequence diagrams. In Proceedings of the OOPSLA’98
Workshop on Formalizing UML. Why? How?, 1998.

8. A. Ayari, D. Basin, and A. Podelski. LISA: A specification language based on
WS2S. In Proceedings of Computer Science Logic, 11th International Workshop,
CSL 1997, Annual Conference of the EACSL, Aarhus, Denmark, volume 1414
of Lecture Notes in Computer Science, pages 18–34. Springer, 1997.

9. J. C. M. Baeten and C. Verhoef. Concrete process algebra. In S. Abramsky,
D. Gabbay, and T. S. E. Maibaum, editors, Handbook of Logic in Computer
Science, pages 149–268. Oxford University Press, 1994.

10. N. Baudru and R. Morin. Safe implementability of regular message sequence
chart specifications. In Proceedings of the ACIS 4th International Confer-
ence on Software Engineering, Artificial Intelligence, Networking and Paral-
lel/Distributed Computing (SNPD 2003), Lübeck, Germany, volume 2380 of
Lecture Notes in Computer Science, pages 210–217. Springer, 2003.

166 References

11. N. Baudru and R. Morin. The pros and cons of netcharts. In Proceedings of
the 15th International Conference on Concurrency Theory (CONCUR 2004),
London, UK, volume 3170 of Lecture Notes in Computer Science, pages 99–114.
Springer, 2004.

12. H. Ben-Abdallah and S. Leue. Syntactic detection of process divergence and non-
local choice in message sequence charts. In Proceedings of the 3rd International
Workshop on Tools and Algorithms for Construction and Analysis of Systems
(TACAS 1997), Enschede, The Netherlands, volume Lecture Notes in Computer
Science 1217, pages 259–274. Springer, 1997.

13. Specification of the Bluetooth System (version 1.1), 2001.
http://www.bluetooth.com.

14. B. Bollig. On the expressiveness of asynchronous cellular automata. In Pro-
ceedings of the 15th International Symposium on Fundamentals of Computation
Theory (FCT 2005), volume 3623 of Lecture Notes in Computer Science, pages
528–539, Lübeck, Germany, 2005. Springer.

15. B. Bollig, C. Kern, M. Schlütter, and V. Stolz. MSCan – A tool for analyzing
MSC specifications. In Proceedings of the 12th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS 2006),
Vienna, Austria, volume 3920 of LNCS, pages 455–458. Springer, 2006. The tool
web page is located at http://www-i2.informatik.rwth-aachen.de/MSCan/.

16. B. Bollig and M. Leucker. A hierarchy of implementable MSC languages. In
Proceedings of the 25th IFIP WG6.1 International Conference on Formal Tech-
niques for Networked and Distributed Systems (FORTE 2005), volume 3731 of
Lecture Notes in Computer Science, pages 53–67, Taipei, Taiwan, ROC, 2005.
Springer.

17. B. Bollig and M. Leucker. Message-passing automata are expressively equivalent
to EMSO logic. Theoretical Computer Science, to appear, 2006. A preliminary
version appeared in Proceedings of CONCUR 2004, volume 3170 of Lecture
Notes in Computer Science, pages 146–160. Springer, 2004.

18. T. Bolognesi and E. Brinksma. Introduction to the ISO specification language
LOTOS. In P. H. J. van Eijk, C. A. Vissers, and M. Diaz, editors, The Formal
Description Technique LOTOS, pages 23–73. Elsevier Science Publishers North-
Holland, 1989.

19. D. Brand and P. Zafiropulo. On communicating finite-state machines. Journal
of the ACM, 30(2), 1983.

20. J. Büchi. Weak second order logic and finite automata. Z. Math. Logik, Grund-
lag. Math., 5:66–62, 1960.

21. T. Chatain, L. Hélouët, and C. Jard. From automata networks to HMSCs: A
reverse model engineering perspective. In Proceedings of the 25th IFIP WG6.1
International Conference on Formal Techniques for Networked and Distributed
Systems (FORTE 2005), volume 3731 of Lecture Notes in Computer Science,
pages 489–502, Taipei, Taiwan, ROC, 2005. Springer.

22. E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization
skeletons using branching time temporal logic. In Proceedings of the Workshop
on Logics of Programs, volume 131 of Lecture Notes in Computer Science, pages
52–71. Springer, 1981.

23. E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. The MIT Press,
Cambridge, Massachusetts, 1999.

24. R. Cori, Y. Métivier, and W. Zielonka. Asynchronous mappings and asyn-
chronous cellular automata. Information and Computation, 106:159–202, 1993.

References 167

25. W. Damm and D. Harel. LSCs: Breathing life into message sequence charts.
Formal Methods in System Design, 19:1:45–80, 2001.

26. V. Diekert and P. Gastin. LTL is expressively complete for Mazurkiewicz traces.
In Proceedings of the 27th International Colloquium on Automata, Languages
and Programming (ICALP 2000), Geneva, Switzerland, volume 1853 of Lecture
Notes in Computer Science, pages 211–222. Springer, 2000.

27. V. Diekert and G. Rozenberg, editors. The Book of Traces. World Scientific,
Singapore, 1995.

28. Volker Diekert. Combinatorics on Traces, volume 454 of Lecture Notes in Com-
puter Science. Springer, 1990.

29. M. Droste, P. Gastin, and D. Kuske. Asynchronous cellular automata for pom-
sets. Theoretical Computer Science, 247(1-2):1–38, 2000.

30. H.-D. Ebbinghaus, J. Flum, and W. Thomas. Mathematical Logic. second
edition. Springer, 1994.

31. Werner Ebinger. Logical definability of trace languages. In Diekert and Rozen-
berg [27], chapter 10, pages 382–390.

32. C. C. Elgot. Decision problems of finite automata design and related arithmetics.
Trans. Amer. Math. Soc., 98:21–52, 1961.

33. J. Fanchon and R. Morin. Regular sets of pomsets with autoconcurrency. In
13th International Conference on Concurrency Theory (CONCUR 2002), Brno,
Czech Republic, volume 2421 of Lecture Notes in Computer Science, pages 402–
417. Springer, 2002.

34. B. Genest. Compositional message sequence charts (CMSCs) are better to im-
plement than MSCs. In Proceedings of the 11th Int. Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS 2005), Ed-
inburgh, UK, volume 3340 of LNCS, pages 429–444. Springer, 2005.

35. B. Genest, D. Kuske, and A. Muscholl. A Kleene theorem for a class of commu-
nicating automata with effective algorithms. In Proceedings of the 8th Interna-
tional Conference on Developments in Language Theory (DLT 2004), Auckland,
New Zealand, volume 3340 of Lecture Notes in Computer Science, pages 30–48.
Springer, 2004.

36. B. Genest, M. Minea, A. Muscholl, and D. Peled. Specifying and verifying partial
order properties using template MSCs. In Proceedings of the 7th International
Conference on Foundations of Software Science and Computation Structures
(FOSSACS 2004), Barcelona, Spain, pages 195–210. Lecture Notes in Computer
Science, 2004.

37. B. Genest, A. Muscholl, H. Seidl, and M. Zeitoun. Infinite-state high-level
MSCs: Model-checking and realizability. In Proceedings of the 29th Interna-
tional Colloquium on Automata, Languages and Programming (ICALP 2002),
Malaga, Spain, volume 2380 of Lecture Notes in Computer Science, pages 657–
668. Springer, 2002.

38. D. Giammarresi, A. Restivo, S. Seibert, and W. Thomas. Monadic second-order
logic over rectangular pictures and recognizability by tiling systems. Information
and Computation, 125(1):32–45, 1996.

39. E. Grädel, W. Thomas, and T. Wilke, editors. Automata, logics, and infinite
games, volume 2500 of Lecture Notes in Computer Science. Springer, 2002.

40. E. Gunter, A. Muscholl, and D. Peled. Compositional message sequence charts.
International Journal on Software Tools and Technology Transfer (STTT),
5(1):78–89, 2003.

168 References

41. W. Hanf. Model-theoretic methods in the study of elementary logic. In J. W. Ad-
dison, L. Henkin, and A. Tarski, editors, The Theory of Models. North-Holland,
Amsterdam, 1965.

42. D. Harel and H. Kugler. Synthesizing state-based object systems from LSCs
specifications. Foundations of Computer Science, 13:1:5–51, 2002.

43. L. Hélouët and P. Le Magait. Decomposition of message sequence charts. In
Proceedings of SAM 2000, 2nd Workshop on SDL and MSC, Col de Porte,
Grenoble, France, pages 47–60. VERIMAG, IRISA, SDL Forum, 2000.

44. J. G. Henriksen, J. L. Jensen, M. E. Jørgensen, N. Klarlund, R. Paige, T. Rauhe,
and A. Sandholm. Mona: Monadic second-order logic in practice. In Proceedings
of the First International Workshop on Tools and Algorithms for Construction
and Analysis of Systems (TACAS 1995), Aarhus, Denmark, volume 1019 of
Lecture Notes in Computer Science, pages 89–110. Springer, 1995.

45. J. G. Henriksen, M. Mukund, K. Narayan Kumar, M. Sohoni, and P. S. Thia-
garajan. A theory of regular MSC languages. Information and Computation,
202(1):1–38, 2005. The paper subsumes results from [46, 47, 74].

46. J. G. Henriksen, M. Mukund, K. Narayan Kumar, and P. S. Thiagarajan. On
message sequence graphs and finitely generated regular MSC languages. In Pro-
ceedings of the 27th International Colloquium on Automata, Languages and Pro-
gramming (ICALP 2000), Geneva, Switzerland, volume 1853 of Lecture Notes
in Computer Science, pages 675–686. Springer, 2000.

47. J. G. Henriksen, M. Mukund, K. Narayan Kumar, and P. S. Thiagarajan. Reg-
ular collections of message sequence charts. In Proceedings of the 25th Interna-
tional Symposium on Mathematical Foundations of Computer Science (MFCS
2000), Bratislava, Slovakia, volume 1893 of Lecture Notes in Computer Science,
pages 405–414. Springer, 2000.

48. J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory,
Languages and Computability. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2000.

49. ITU-TS Recommendation Z.120anb: Formal Semantics of Message Sequence
Charts, 1998.

50. ITU-TS Recommendation Z.120: Message Sequence Chart 1999 (MSC99), 1999.
51. H. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, University

of California, Los Angeles, 1968.
52. J.-P. Katoen and L. Lambert. Pomsets for message sequence charts. In H. König

and P. Langendörfer, editors, Formale Beschreibungstechniken für Verteilte Sys-
teme, pages 197–208, Cottbus, Germany, 1998. Shaker Verlag.

53. S. C. Kleene. Representation of events in nerve nets and finite automata. In
C. Shannon and J. McCarthy, editors, Automata Studies, Annals of Math. Stud-
ies 34, pages 3–40. Princeton, New Jersey, 1956.

54. D. Kozen. Results on the propositional µ-calculus. Theoretical Computer Sci-
ence, 27:333–354, December 1983.

55. D. Kuske. Emptiness is decidable for asynchronous cellular machines. In Pro-
ceedings of the 11th International Conference on Concurrency Theory (CON-
CUR 2000), University Park, PA, USA, volume 1877 of Lecture Notes in Com-
puter Science, pages 536–551. Springer, 2000.

56. D. Kuske. Regular sets of infinite message sequence charts. Information and
Computation, 187:80–109, 2003.

57. P. B. Ladkin and S. Leue. Interpreting message flow graphs. Formal Aspects of
Computing, 7(5):473–509, 1995.

References 169

58. M. Leucker. Logics for Mazurkiewicz traces. PhD thesis, Lehrstuhl für Infor-
matik II, RWTH Aachen, 2002.

59. M. Leucker, P. Madhusudan, and S. Mukhopadhyay. Dynamic message sequence
charts. In Proceedings of the 22nd Conference on Foundations of Software Tech-
nology and Theoretical Computer Science (FSTTCS 2002), Kanpur, India, vol-
ume 2556 of Lecture Notes in Computer Science, pages 253–264. Springer, 2002.

60. L. Libkin. Elements of Finite Model Theory. Springer, Berlin, 2004.
61. M. Lohrey. Realizability of high-level message sequence charts: closing the gaps.

Theoretical Computer Science, 309(1-3):529–554, 2003.
62. M. Lohrey and A. Muscholl. Bounded MSC Communication. Information and

Computation, 189(2):160–181, 2004.
63. P. Madhusudan. Reasoning about sequential and branching behaviours of mes-

sage sequence graphs. In Proceedings of the 28th International Colloquium on
Automata, Languages and Programming (ICALP 2001), Crete, Greece, volume
2076 of Lecture Notes in Computer Science, pages 809–820. Springer, 2001.

64. P. Madhusudan and B. Meenakshi. Beyond message sequence graphs. In Pro-
ceedings of the 21st Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS 2001), Bangalore, India, volume 2245
of Lecture Notes in Computer Science, pages 256–267. Springer, 2001.

65. O. Matz, N. Schweikardt, and W. Thomas. The monadic quantifier alternation
hierarchy over grids and graphs. Information and Computation, 179(2):356–383,
2002.

66. O. Matz and W. Thomas. The monadic quantifier alternation hierarchy over
graphs is infinite. In Proceedings of the 12th Annual IEEE Symposium on Logic
in Computer Science (LICS 1997), Warsaw, Poland, pages 236–244. IEEE Com-
puter Society Press, 1997.

67. S. Mauw. The formalization of message sequence charts. Computer Networks
and ISDN Systems, 28(12):1643–1657, 1996.

68. S. Mauw and M. A. Reniers. High-level message sequence charts. In Proceedings
of the Eighth SDL Forum (SDL’97), pages 291–306, 1997.

69. B. Meenakshi and R. Ramanujam. Reasoning about message passing in finite
state environments. In Proceedings of the 27th International Colloquium on
Automata, Languages and Programming (ICALP 2000), Geneva, Switzerland,
volume 1853 of Lecture Notes in Computer Science, pages 487–498. Springer,
2000.

70. B. Meenakshi and R. Ramanujam. Reasoning about layered message passing
systems. Computer Languages, Systems, and Structures, 30(3-4):529–554, 2004.

71. R. Milner. Communication and Concurrency. International Series in Computer
Science. Prentice Hall, 1989.

72. R. Morin. On regular message sequence chart languages and relationships to
Mazurkiewicz trace theory. In Proceedings of the 4th International Conference
on Foundations of Software Science and Computation Structures (FOSSACS
2001), Genova, Italy, volume 2030 of Lecture Notes in Computer Science, pages
332–346. Springer, 2001.

73. R. Morin. Recognizable sets of message sequence charts. In Proceedings of the
19th Annual Symposium on Theoretical Aspects of Computer Science (STACS
2002), Antibes - Juan les Pins, France, volume 2285 of Lecture Notes in Com-
puter Science, pages 523–534. Springer, 2002.

170 References

74. M. Mukund, K. Narayan Kumar, and M. Sohoni. Synthesizing distributed finite-
state systems from MSCs. In Proceedings of the 11th International Conference
on Concurrency Theory (CONCUR 2000), University Park, PA, USA, volume
1877 of Lecture Notes in Computer Science, pages 521–535. Springer, 2000.

75. M. Mukund, K. Narayan Kumar, and P. S. Thiagarajan. Netcharts: Bridging the
gap between HMSCs and executable specifications. In Proceedings of the 14th
International Conference on Concurrency Theory (CONCUR 2003), Marseille,
France, volume 2761 of Lecture Notes in Computer Science, pages 293–307.
Springer, 2003.

76. A. Muscholl and D. Peled. Message sequence graphs and decision problems
on Mazurkiewicz traces. In Proceedings of the 24th International Symposium
on Mathematical Foundations of Computer Science (MFCS 1999), Szklarska
Poreba, Poland, volume 1672 of Lecture Notes in Computer Science, pages 81–
91. Springer, 1999.

77. A. Muscholl and D. Peled. From finite state communication protocols to
high-level message sequence charts. In Proceedings of the 28th International
Colloquium on Automata, Languages and Programming (ICALP 2001), Crete,
Greece, volume 2076 of Lecture Notes in Computer Science, pages 720–731.
Springer, 2001.

78. A. Muscholl, D. Peled, and Z. Su. Deciding properties for message sequence
charts. In Proceedings of the 1st International Conference on Foundations of
Software Science and Computation Structures (FOSSACS 1998), Lisbon, Portu-
gal, volume 1578 of Lecture Notes in Computer Science, pages 226–242. Springer,
1998.

79. E. Ochmański. Recognizable Trace Languages. In Diekert and Rozenberg [27],
chapter 6, pages 167–204.

80. Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
81. D. Perry. VHDL. McGraw-Hill, New York, 1991.
82. Giovanni Pighizzini. Asynchronous automata versus asynchronous cellular au-

tomata. Theoretical Computer Science, 132(2):179–207, 1994.
83. Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th IEEE

Symposium on the Foundations of Computer Science (FOCS 1977), Providence,
Rhode Island, pages 46–57. IEEE Computer Society Press, 1977.

84. A. Potthoff, S. Seibert, and W. Thomas. Nondeterminism versus determinism
of finite automata over directed acyclic graphs. Bulletin of the Belgian Mathe-
matical Society, 1, 1994.

85. A. Robinson and A. Voronkov, editors. Handbook of Automated Reasoning.
Elsevier, 2001.

86. Philippe Schnoebelen. Verifying lossy channel systems has nonprimitive re-
cursive complexity. Information Processing Letters, 83(5):251–261, September
2002.

87. B. Sengupta and R. Cleaveland. Triggered message sequence charts. In Pro-
ceedings of the 10th ACM SIGSOFT Symposium on Foundations of Software
Engineering, pages 167–176. ACM Press, 2002.

88. P. S. Thiagarajan. PTL over product state spaces. Technical Report TCS-95-4,
Chennai Mathematical Institute, 1995.

89. P. S. Thiagarajan. A trace consistent subset of PTL. In Proceedings of the 6th
International Conference on Concurrency Theory (CONCUR 1995), Philadel-
phia, PA, USA, volume 962 of Lecture Notes in Computer Science, pages 438–
452. Springer, 1995.

References 171

90. W. Thomas. On logical definability of trace languages. In Proceedings of a work-
shop of the ESPRIT Basic Research Action No 3166: Algebraic and Syntactic
Methods in Computer Science (ASMICS), Kochel am See, Germany (1989),
Report TUM-I9002, Technical University of Munich, pages 172–182, 1990.

91. W. Thomas. On Logics, Tilings, and Automata. In Proceedings of the 18th Inter-
national Colloquium on Automata, Languages and Programming (ICALP 1991),
Madrid, Spain, volume 510 of Lecture Notes in Computer Science. Springer,
1991.

92. W. Thomas. Elements of an automata theory over partial orders. In Proceed-
ings of Workshop on Partial Order Methods in Verification (POMIV 1996),
volume 29 of DIMACS. AMS, 1996.

93. W. Thomas. Automata theory on trees and partial orders. In Proceedings of
TAPSOFT 1997: Theory and Practice of Software Development, 7th Interna-
tional Joint Conference CAAP/FASE, Lille, France, volume 1214 of Lecture
Notes in Computer Science, pages 20–38. Springer, 1997.

94. W. Thomas. Languages, automata and logic. In A. Salomaa and G. Rozenberg,
editors, Handbook of Formal Languages, volume 3, Beyond Words, pages 389–
455. Springer, Berlin, 1997.

95. I. Walukiewicz. Difficult configurations – on the complexity of LTrL. In Pro-
ceedings of the 25th International Colloquium on Automata, Languages and Pro-
gramming (ICALP 1998), Aalborg, Denmark, volume 1443 of Lecture Notes in
Computer Science, pages 140–151, 1998.

96. P. Weil. Algebraic recognizability of languages. In Proceedings of the 29th Inter-
national Symposium on Mathematical Foundations of Computer Science (MFCS
2004), Prague, Czech Republic, volume 3153 of Lecture Notes in Computer Sci-
ence, pages 149–175. Springer, 2004.

97. W. Zielonka. Notes on finite asynchronous automata. R.A.I.R.O. — Informa-
tique Théorique et Applications, 21:99–135, 1987.

Symbols and Notation

Chapter 2

R1 ◦ R2 relation product 11
� covering relation 12
RAT M rational subsets of M 12
RECM recognizable subsets of M 14

� blank symbol of a Turing machine 14
ConfM configurations of a Turing machine 14
�M behavior of a Turing machine 14

Chapter 3

� edge relation 17
|G| cardinality of G 17

DG set of graphs 18
K[B] graphs from K with degree bounded by B 18
〈K, Q〉 Q-extension of K 18

MSO monadic second-order formulas 18

FO first-order formulas 20

EMSO existential monadic second-order formulas 20
Σk Σk-formulas 20
MSOK MSO-definable languages 21
FOK FO-definable languages 21
EMSOK EMSO-definable languages 21
LK(Σk) Σk-definable languages 21
dG(u′, u) distance from u′ to u 23
R-Sph(G, u) R-sphere of G around u 23
R-Sph(K) R-spheres that arise from K 24
rank(ϕ) rank of formula ϕ 24

174 Symbols and Notation

G1 ≡k G2 FO-k-equivalence 24
G1 �R,t G2 threshold equivalence 25
Cond(O, t) occurrence conditions over O and t 25
LT T K locally threshold testable languages 26
h(G) projection of G 27
LK(B) language of B relative to K 28
GAK languages of GAs 28
k-GAK languages of GAs with k-spheres 28
GA−

K languages of GAs
without occurrence constraints 29

DAG set of dags 30
DAGH set of Hasse dags 30
G⇓u downwards closure 30
G↓u strict downwards closure 30

P pictures 31

GR grids 33

Chapter 4

W words 35
first(w) first element of w 35
last(w) last element of w 35
ε empty word 35

FA languages of finite automata 37

det-FA languages of deterministic finite automata 37
Lin(G) linearizations of G 39

Chapter 5

Ag agents 44

Σ̃ distributed alphabet 44
loc(a) agents involved in a 44
I eΣ independence relation 44
D eΣ dependence relation 44

Ch channels 44

DAGlo(Σ̃, C) lo-dags 45

DAG(Σ̃, C) (Σ̃, C)-dags 45

DAG⇒(Σ̃, C) fifo-dags 45

DAG(Σ̃) (Σ̃,−)-dags 45
Read(u) read domain of u 47

Symbols and Notation 175

Write(u) write domain of u 47
D� i projection of D onto i 47
λ|V ′ restriction of λ to V ′ 47

TR+ M+-traces 48

TR− M−-traces 48

Γ communication actions over Ag 48

Γ̃ distributed alphabet over Ag 48

MSC MSCs 49

LMSC lossy MSCs 49
=⇒(eΣ,C) operational behavior of (Σ̃, C)-dags 50
Trans(eΣ,C)(Q) transitions over (Σ̃, C) and Q 50
D(t) graph of transition t 50
q −→ (a, q) ∈ ∆ (q, a, q) ∈ ∆ 51

finalq
D

global final state 52

sourceq
D

(u) source nodes of u 52
ACAT K languages of ACATs 53
ACAK languages of ACAs 53

Chapter 6

TR+ M+-traces 77

TR− M−-traces 77
1TRα unit trace 79
c-RAT TRα c-rational subsets of TRα 79
RTRα regular trace languages 79
L � eΣ T trace inference 79
P0

TRα weak product trace languages 80
PTRα product trace languages 80

RP0
TRα weak regular product trace languages 80

RPTRα regular product trace languages 80

s
a
−→ s′ (s, s′) ∈ ∆a 81

AAα languages of asynchronous automata 83

det-AAα languages of det. asynchronous automata 83
=⇒A global transition relation of A 83

PAα languages of product automata 88

Chapter 7

Γ communication actions over Ag 91

Γ̃ distributed alphabet over Ag 92
Vum unmatched nodes 92

176 Symbols and Notation

Ag(u) agent executing u 92
Ag(M) agents of M 92

PMSC partial MSCs 93

LMSC lossy MSCs 93

MSC MSCs 93

M �M′ M represents M′ 93
CG(M) communication graph of M 95
MSC∀B universally B-bounded MSCs 96
MSC∃B existentially B-bounded MSCs 96
L(H) MSC language of HcMSC H 98
Graph(H) graph of HcMSC H 98

HcMSC MSC languages of HcMSCs 100
gc-HcMSC MSC languages of gc-HcMSCs 100
safe-gc-HcMSC MSC languages of safe gc-HcMSCs 100
left-closed-gc-HcMSC MSC languages of left-closed gc-HcMSCs 100

HMSC MSC languages of HMSCs 100
gc-HMSC MSC languages of gc-HMSCs 100

lc-HcMSC MSC languages of lc-HcMSCs, 102
MSC→↘(Ag, Λ) (potentially) non-fifo MSCs over (Ag , Λ) 104
MSC(Ag , Λ) fifo MSCs over (Ag , Λ) 104
�(M, L) universal LSC 105
♦(M) existential LSC 105
RMSC regular MSC languages 107
L �Ag M MSC inference 109
P0

MSC
weak product MSC languages 109

PMSC product MSC languages 109

RP0
MSC

weak regular product MSC languages 110
RPMSC regular product MSC languages 110

EP0
MSC

weak EMSO-def. product MSC languages 110
EPMSC EMSO-def. product MSC languages 110

Chapter 8

CM CMs 118

CFM CFMs 118

N -CM N -CMs 118
CM� locally-accepting CMs 118

det-CM deterministic CMs 118
L(CM) languages of CMs 118

CFM languages of CFMs 118
ConfA configurations of A 119
=⇒A global transition relation of A 119
�A global transition relation of A 120

Symbols and Notation 177

∀CM ∀-bounded CMs 122

∃CM ∃-bounded CMs 122

∀∀CM strongly ∀-bounded CMs 122

safe-CM safe CMs 122
�
�A

lossy steps of A 128

�lcs
A global transition relation of LCS A 128
CFM→↘(Ag, Λ) languages of (potentially) non-fifo CFMs 130
CFM(Ag , Λ) languages of fifo CFMs over (Ag, Λ) 130

Index

action, 17, 30, 48
receive, 91
send, 91

adjusted, 54
agent, 44
alphabet, 11

dependence, 44
asynchronous automaton, 80

deterministic, 81
language of an, 82

asynchronous cellular automaton, 53
deterministic, 53
language of an, 53

asynchronous mapping, 86

blank symbol, 14

cardinality, 17
channel, 44
channel contents, 119, 131
code generation, 2
communicating finite-state machine,

118, 130
communicating machine, 117

N -, 118
deterministic, 118
existentially bounded, 122
extended, 123
finite, 118
language of a, 118
locally accepting, 118
strongly universally bounded, 122
universally bounded, 122

communication closed, 57

communication graph, 95
concatenation

asynchronous, 94
trace, 78

configuration, 14, 50, 119
deadlock, 122
final, 120
initial, 120
non-fifo, 131
reachable, 120

definable, 21
degree, 18

bounded, 18
dependent, 44
directed acyclic graph, 30, 44
distance, 23
distributed alphabet, 44
domain

read, 47
write, 47

downwards closure, 30
strict, 30

edge, 17
event, 30
execution, 98

accepting, 98

fifo-dag, 44
finite automaton, 36

deterministic, 37
language of a, 36

formula

180 Index

existential, 20
first-order, 20
language of a, 20
monadic second-order, 18
occurrence, 25

generated, 108
graph, 17, 98

bounded, 18
connected, 17
extended, 18

graph acceptor, 27
language of a, 28

grid, 33

halting problem, 15
Hasse diagram, 12
HcMSC

globally cooperative, 98
left-closed, 98
local-choice, 102
safe, 98

hierarchy
monadic quantifier-alternation, 21

implementable, 118
independent, 44
interpretation function, 19
iteration, 12

labeling function, 12, 17
language, 12, 128

grid, 33
rational, 12
recognizable, 13

letter, 11
letter position, 35
linearization, 39
live sequence chart

existential, 105
universal, 105

live sequence chart specification, 105
lo-dag, 44
locally covering, 57
locally threshold testable, 26
lossy channel system, 128

maximal, 12
message contents, 103

message sequence chart, 48, 92
degenerate, 104
lossy, 49, 92
non-fifo, 104
partial, 92

minimal, 12
monadic second-order logic, 18
monoid, 12

MSC, 94
trace, 79

monoid automaton, 13
MSC language, 93

EMSO-definable product, 110
existentially bounded, 96
product, 109
regular, 107
regular product, 110
universally bounded, 96
weak EMSO-definable product, 110
weak product, 109
weak regular product, 110

node, 17, 98, 146

occurrence condition, 25

partial order, 12
partially ordered set, 12
picture, 31
poset, 12

labeled, 12
power-set construction, 37
product, 11, 12
product automaton, 87

language of a, 88
projection, 27, 47, 94
projective, 49

radius, 27
rank, 24
rational expression, 13

atomic, 13
compound, 13
star-connected, 79

relation
antisymmetric, 11
covering, 12
dependence, 44
edge, 17

Index 181

reflexive, 11
step, 98
successor, 35
transitive, 11

representation, 93
run, 36, 81, 87, 118, 128, 130

accepting, 36, 53, 82, 118, 128, 130

safe, 122
satisfied, 26, 105
sentence, 20
state, 13, 14, 27, 36, 53, 128

final, 14, 53, 98
global, 83, 88, 119
global final, 81, 87, 117, 128
global initial, 52, 80, 87, 117, 124, 128
initial, 13, 36, 98
local, 80, 87, 117

state separated, 53
string, 11
superedge, 34
supergrid, 34
symbol, 11
synchronization data, 117
synchronization message, 117, 128

tape alphabet, 14

total order, 12
totally ordered set, 12
trace, 47, 48, 77

poset, 78
trace language

product, 80
regular, 79
regular product, 80
weak product, 80
weak regular product, 80

transition, 36, 50, 53
local, 87, 117
synchronizing, 80

transition relation, 14
global, 83, 88, 119, 131

tree, 146
Turing machine, 14
type function, 53

unit, 12

variable
individual, 18
set, 18

word, 11, 35
working tape, 14

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

